Institut Polytechnique de Paris
Ecole Polytechnique ENSTA Ecole des Ponts ENSAE Télécom Paris Télécom SudParis
Share

ERC SINGER - Stochastic dynamics of sINgle cells : Growth, Emergence and Resistance

ERC SINGER -  Stochastic dynamics of sINgle cells : Growth, Emergence and Resistance

Themes

  • Applied Mathematics
  • Stochastic Processes
  • Bacterial Evolution
  • Modeling in Hematology
  • Biology
  • Research
  • Medical

About 

The ERC SINGER project aims to introduce new stochastic and deterministic models for biological and medical applications. This is an interdisciplinary societal challenge that seeks to develop scenarios of resistance evolution as well as better strategies for antibiotics or chemotherapy related to them. 

The primary objective is to study new multi-scale mathematical problems, inspired by the biological challenges posed by unicellular organisms. By working closely with biology experts, we seek to understand and model the complexity of evolving populations while contributing to the development of new mathematical theories to address these exciting challenges.

The Project

The project focuses on the eco-evolutionary biology of asexual populations of bacteria or cells, exploring how survival and reproduction depend on phenotypic or genetic traits. The evolution of these traits results from various mechanisms, and the major challenge is to predict evolution scenarios considering these mechanisms. The project takes advantage of recent measurements of individual cells, where small populations and high variability are observed, with a significant impact from the environment.   

The main objective is to develop stochastic models to control these fluctuations and predict their behavior in response to environmental changes.  

The mathematical approach adopted encompasses a class of models and characteristics aimed at medical and biological applications for populations evolving, reproducing, growing, and emerging. Close collaboration with biologists will solve biological problems by posing new mathematical questions. The project follows a tradition of developing new mathematical concepts from biological discoveries, using structured population and growth-fragmentation models.

The methodology involves structured stochastic processes with measure-valued traits generating a diversity of macroscopic behaviors. The main tools include limit theorems, stochastic differential equations, branching processes with interactions, and nonlinear partial differential equations.

The project represents a mathematical challenge by seeking to reconcile stochastic and Hamilton-Jacobi approaches in eco-evolutionary modeling, exploring new time and size scales, and controlling extinction events. It also addresses medical problems, particularly understanding leukemic mutations and response times in multi-scale systems, with potential implications for medical treatments.

Key Research Themes :

  • Transition from stochastic processes to Hamilton-Jacobi equations,

  • Modeling leukemic mutations and response times in multi-scale systems,

  • Tracing lineages and reverse paths in nonlinear situations,

  • Modeling the growth and fragmentation of multi-type bacteria in response to antibiotics.

In summary, this project relies on mathematical models to explore the mechanisms of biological population evolution at different scales, focusing on mathematical challenges and potential applications in biology and medicine. 

The Two Main Axes of the Project 

  • Axis 1 : Development of a mathematical framework to track very small subpopulations in large population approximations to explain and quantify surprising long-term behaviors in population evolutionary dynamics, such as the emergence of "extinct populations".
  • Axis 2 : Modeling and mathematical understanding of resistance evolution scenarions in close collaboration with biologists to propose new strategies considering these scenarios. 

 

The project is supported by :

         

“Funded by the European Union (ERC, acronym, project number). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.”

Permanent Members

Project Leader

Mathematicians

Biologists and Doctors

  • Sylvain Billiard, Professor, Université de Lille, France.
  • Meriem El Karoui, Professor, Université d'Edimbourg, Ecosse.
  • Stéphane Giraudier, Professor, Hôpital Saint - Louis, France.
  • Raphaël Itzykson, Professor, Hôpital Saint - Louis, France.
  • Evelyne Lauret, Researcher, CNRS, INSERM, Institut Cochin, France.

Temporary Members

Post doc students

  • Laetitia Colombani, Ecole polytechnique, France.

Phd students

  • Anouar Jeddi, Ecole polytechnique, France.
  • Alexandre Perrin, Ecole polytechnique, France.

 

Public Events 

  • Seminars
  • Summer Schools

Internal Events

  • Working Groups

Project References 

[1] V. Bansaye. Ancestral lineages and limit theorems for branching Markov chains in varying environment. J. Theoret. Probab. 32 (2019), no. 1, 249-281.

[2] M. Baar, L. Coquille, H. Mayer, M. Holzel, M. Rogava, T. Touting, A. Bovier. A stochastic model for immunotherapy of cancer. Sci. Rep. 6, (2016),24169.

[3] M. Baar, A. Bovier, N. Champagnat. From stochastic, individual-based models to the canonical equation of adaptive dynamics in one step. Ann. Appl. Probab. 27 (2017), no. 2, 1093-1170.

[4] M. Baar, A. Bovier. The polymorphic evolution sequence for populations with phenotypic plasticity. Electron. J. Probab. 23 (2018), No 72.

[5] Z. Baharoglu, D. Mazel. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiology Reviews, Volume 38, Issue 6, November 2014, Pages 1126- 1145, https://doi.org/10.1111/1574-6976.12077.

[6] J. Baker, P. Chigansky, P. Jagers, F.C. Klebaner. On the establishment of a mutant. J. Math. Biol. 80 (2020), no. 6, 1733-1757.

[7] G. Barles, B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics. In D. Danielli (ed.), Recent Developments in Nonlinear Partial Diferential Equations, Contemp. Math. Series 439 (2007), 57-68.

[8] G. Barles, S. Mirrahimi, B. Perthame. Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. Methods Appl. Anal., 16(3), (2009), 32-340.

[9] N. Berestycki. Recent progress in coalescent theory, Ensaios Matematicos 16, (2009), 1-193. [10] [10] S. Billiard, P. Collet, R. Ferriere, S. Meleard, V.C. Tran. The effect of competition and horizontal trait hesitance on invasion, fixation and polymorphism. J. Theoret. Biol. 411 (2016), 48-58.

[11] S. Billiard, C. Smadi, The interplay of two mutations in a population of varying size: a stochastic eco-evolutionary model for clonal interference, Stochastic Processes and their Applications, 127(3), (2017), 701-748.

[12] S. Billiard, P. Collet, R. Ferriere, S. Meleard, V.C. Tran. Stochastic dynamics for adaptation and evolution of microorganisms. European Congress of Mathematics Berlin 2016, V. Mehrmann and M. Skutella eds, pp. 525-550, EMS Publishing House, (2018).

[13] J. Blath, T. Paul, A. Tobias. A stochastic adaptive dynamics model for bacterial populations with mutation, dormancy ad transfer. arXiv:2105.09228 (2021).

[14] C. Bonnet, S. Meleard Large fluctuations in multi-scale modeling for rest erythropoiesis, in revision for J. Math. Biol..

[15] V. Calvez, S. Figueroa Iglesias, H. Hivert, S. Meleard, A. Melnykova, S. Nordmann. Horizontal gene transfer: numerical comparison between stochastic and deterministic approaches. To appear in ESAIM Proceedings (CEMRACS 2018).

[16] P. Cattiaux, P. Collet, A. Lambert, S. Martinez, S. Meleard, J. San Martin. Quasi-stationarity distributions and diffusion models in population dynamics, Ann. Probab. 37 (2009), no. 5, 1926-1969.

[17] N. Champagnat. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Their Appl. 116 (2006), 1127-1160.

[18] N. Champagnat, S. Meleard. Polymorphic evolution sequence and evolutionary branching. Probab. Theory Related Fields 151 (2011), no. 1-2, 45-94.

[19] N. Champagnat, S. Meleard, V.C. Tran. Stochastic analysis of emergence of evolutionary cyclic behavior in population dynamics with transfer, to appear in Ann. Appl. Probability (2020).

[20] J.R. Chazottes, P. Collet, S. Meleard. Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes. Probab. Theory Related Fields 164 (2016), no. 1-2, 285-332.

[21] J.R. Chazottes, P. Collet, S. Meleard. On time scales and quasi-stationary distributions for multitype birth-and-death processes. Ann. of IHP, Vol. 55, No. 4, 2249-2294 (2019).

[22] J.R. Chazottes, P. Collet, S. Martinez, S. Meleard. Quasi-stationary distributions and resilience: what to get from a sample? J. Ec. polytech. Math. 7 (2020), 943-980.

[23] K.L. Chung, J.B. Walsh. To reverse a Markov process. Acta Mathematica 123, (1969), 225-251.

[24] B. Cloez, P. Gabriel. On an irreducibility type condition for the ergodicity of nonconservative semigroups. Comptes Rendus. Mathematique 358, 6 (2020), 733-742.

[25] P. Collet, S. Meleard, J.A.J. Metz. rigorous model study of the adaptive dynamics of Mendelian diploids. J. Math. Biol. 67 (2013), no. 3, 569-607.

[26] M. Costa, C. Etchegaray, S. Mirrahimi. Survival criterion for a population subject to selection and mutations; Application to temporally piecewise constant environments, Nonlinear Analysis: Real World Applications, Vol. 59, (2021), 103239.

[27] L. Desvillettes, P. E. Jabin, S. Mischler, G. Raoul. On mutation-selection dynamics for continuous structured populations. Commun. Math. Sci. 6(3), (2008), 729-747.

[28] U. Dieckmann, R. Law. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34 (1996), 579-612.

[29] O. Diekmann. A beginner's guide to adaptive dynamics. In Mathematical modelling of population dynamics, volume 63 of Banach Center Publ., Polish Acad. Sci. (2004), 47-86.

[30] O. Diekmann, P. E. Jabin, S. Mischler, B. Perthame. The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol. 67 (2005), 257-271.

[31] D. Donnelly, T.G. Kurtz. Genealogical processes for Fleming-Viot models with selection and recombination. Ann. Appl. Probab. 9(4), (1999), 1091-1148.

[32] M. Doumic, M. Homann, N. Krell, L. Robert. Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli 21 (2015), no. 3, 1760-1799.

[33] M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Stochastic Gene Expression in a Single Cell. Science 297, (2002), no. 5584, 1183-1186.

[34] A.M. Etheridge, T.G. Kurtz. Genealogical constructions of population models. Ann. Probab. 47 (2019), no. 4, 1827-1910.

[35] S; Ethier, T. Kurtz. Markov Processes: characterization and Convergence. John Wiley & Sons, Inc., 1986.

[36] A. Gupta, J.A.J. Metz, V.C. Tran. A new proof for the convergence of an individual based model to the trait substitution sequence. Acta Appl. Math. 131 (2014), 1-27.

[37] S. Figueroa Iglesias, S. Mirrahimi, Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM J. Math. Anal., Vol. 50.5 (2018) pp. 5537-5568.

[38] S. Figueroa Iglesias, S. Mirrahimi. Selection and mutation in a shifting and fluctuating environment, accepted in Comm. Math. Sci., (2021).

[39] N. Fournier, S. Meleard. A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14 (2004), 1880-1919.

[40] S.C. Harris, M.I. Roberts. The many-to-few lemma and multiple spines. Ann. Inst. Henri Poincare Probab. Stat. 53 (2017), no. 1, 226-242.

[41] S.C. Harris, S. Johnston and M.I. Roberts. The coalescent structure of continuous-time Galton-Watson trees. Ann. Appl. Probab. Vol. 30, No 3.1368-1414, 2020.

[42] M. Holzel, A. Bovier, T. Tuting. Plasticity of tumour and immune cells: a source of heterogeneity and a cause of therapy resistance? Nat.Rev. Cancer 13, (2013), 365-376.

[43] P.-E.Jabin. Small populations corrections for selection-mutation models. Netw. Heterog. Media, 7(4), (2012), 805-836.

[44] J.F.C. Kingman. The coalescent. Stochastic Processes and Their Applications 13 (1982), 235-248.

[45] F. Knauer, T. Stiehl, A. Marciniak-Czochra. Oscillations in a white blood cell production model with multiple differentiation stages. J Math Biol 80, (2020), 575-600.

[46] A. Marguet. Uniform sampling in a structured branching population, Bernoulli, 25, 4A (2019), 2649-2695.

[47] S. Meleard, D. Villemonais. Quasi-stationary distributions and population processes. Probab. Surv. 9 (2012), 340-410.

[48] S. Meleard, V.C. Tran. Nonlinear historical superprocess approximations for population models with past dependence. Electron. J. Probab. 17 (2012), no. 47, 1-32.

[49] S. Meleard, V.C. Tran. Trait substitution sequence process and canonical equation for age structured populations. J. Math. Biol. 58 (2009), no. 6, 881-921.

[50] J.A.J. Metz, V.C. Tran. Daphnias: from the individual based model to the large population equation. J. Math. Biol. 66 (2013), no. 4-5, 915-933.

[51] J. A. J. Metz, S. A. H. Geritz, G. Meszena, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In Stochastic and spatial structures of dynamical systems (Amsterdam, 1995), Konink. Nederl. Akad.Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45, 183-231, North-Holland, Amsterdam, 1996.

[52] S. Mirrahimi, G. Barles, B. Perthame, P. E. Souganidis. A singular Hamilton-Jacobi equation modeling the tail problem. SIAM J. Math. Anal., (2012), 44(6), 4297-4319.

[53] N.V. Mon Pere, T. Lenaerts, J.M.D.S. Pacheco, D. Dingli. Multistage feedback-driven compartmental dynamics of hematopoiesis. IScience 24, (2021), 102326.

[54] M. Nagasawa. Time reversion of Markov processes. Nagoya Math. J. 24, (1964), 117-204.

[55] S.H. Orkin, LM.I. Zon. hematopoiesis: an evolving paradigm from stem cell biology. Cell 132, (2008), 631-644.

[56] E. Perkins. On the martingale problem for interactive measure-valued branching diffusions, Memoirs of the American Mathematical Society ed., vol. 115(549), American Mathematical Society, May 1995.

[57] B. Perthame. Transport Equations in Biology. Birkhauser 2007.

[58] B. Perthame, G. Barles. Dirac concentration in Lotka-Volterra parabolic PDEs. Indiana Univ. Math. J. (57(7), (2008), 3275-3301.

[59] B. Perthame, M. Gauduchon. Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations. Math. Med. Biol., 27(3), (2010),195-210.

[60] A. Raj, A. van Oudenaarden. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell 135 no. 2, (2008), 216-226.

[61] L. Roques, F. Patout, O. Bonnefon, G. Martin. Adaptation in general temporally changing environments. SIAM J. Appl. Math. 80 (2020), no. 6, 2420-2447.

[62] T. Stiehl, A.D. HO, A. Marciniak-Czochra. Assessing hematopoietic (stem)-cell behavior during regenerative pressure. Adv. Exp. Med. Biol. 844 (2014), 347-367.

[63] D. Waxman, S. Gavrilets. 20 Questions on Adaptive Dynamics. J. Evol. Biol. 18(5), (2005), 1139-1154.

To be appointed

Sylvie Méléard :

• Invited Speaker to ICM 2022 : London 2022.

IMS Medallion Lecture: INFORMS Applied Probability Conference, Nancy 2023.

• Plenary Speaker. Mathematics Panorama, Hausdorff Center, Bonn 2023.

Members

Permanent Members

Project Leader

Mathematicians

Biologists and Doctors

  • Sylvain Billiard, Professor, Université de Lille, France.
  • Meriem El Karoui, Professor, Université d'Edimbourg, Ecosse.
  • Stéphane Giraudier, Professor, Hôpital Saint - Louis, France.
  • Raphaël Itzykson, Professor, Hôpital Saint - Louis, France.
  • Evelyne Lauret, Researcher, CNRS, INSERM, Institut Cochin, France.

Temporary Members

Post doc students

  • Laetitia Colombani, Ecole polytechnique, France.

Phd students

  • Anouar Jeddi, Ecole polytechnique, France.
  • Alexandre Perrin, Ecole polytechnique, France.

 

Public Events 

  • Seminars
  • Summer Schools

Internal Events

  • Working Groups

Project References 

[1] V. Bansaye. Ancestral lineages and limit theorems for branching Markov chains in varying environment. J. Theoret. Probab. 32 (2019), no. 1, 249-281.

[2] M. Baar, L. Coquille, H. Mayer, M. Holzel, M. Rogava, T. Touting, A. Bovier. A stochastic model for immunotherapy of cancer. Sci. Rep. 6, (2016),24169.

[3] M. Baar, A. Bovier, N. Champagnat. From stochastic, individual-based models to the canonical equation of adaptive dynamics in one step. Ann. Appl. Probab. 27 (2017), no. 2, 1093-1170.

[4] M. Baar, A. Bovier. The polymorphic evolution sequence for populations with phenotypic plasticity. Electron. J. Probab. 23 (2018), No 72.

[5] Z. Baharoglu, D. Mazel. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiology Reviews, Volume 38, Issue 6, November 2014, Pages 1126- 1145, https://doi.org/10.1111/1574-6976.12077.

[6] J. Baker, P. Chigansky, P. Jagers, F.C. Klebaner. On the establishment of a mutant. J. Math. Biol. 80 (2020), no. 6, 1733-1757.

[7] G. Barles, B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics. In D. Danielli (ed.), Recent Developments in Nonlinear Partial Diferential Equations, Contemp. Math. Series 439 (2007), 57-68.

[8] G. Barles, S. Mirrahimi, B. Perthame. Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result. Methods Appl. Anal., 16(3), (2009), 32-340.

[9] N. Berestycki. Recent progress in coalescent theory, Ensaios Matematicos 16, (2009), 1-193. [10] [10] S. Billiard, P. Collet, R. Ferriere, S. Meleard, V.C. Tran. The effect of competition and horizontal trait hesitance on invasion, fixation and polymorphism. J. Theoret. Biol. 411 (2016), 48-58.

[11] S. Billiard, C. Smadi, The interplay of two mutations in a population of varying size: a stochastic eco-evolutionary model for clonal interference, Stochastic Processes and their Applications, 127(3), (2017), 701-748.

[12] S. Billiard, P. Collet, R. Ferriere, S. Meleard, V.C. Tran. Stochastic dynamics for adaptation and evolution of microorganisms. European Congress of Mathematics Berlin 2016, V. Mehrmann and M. Skutella eds, pp. 525-550, EMS Publishing House, (2018).

[13] J. Blath, T. Paul, A. Tobias. A stochastic adaptive dynamics model for bacterial populations with mutation, dormancy ad transfer. arXiv:2105.09228 (2021).

[14] C. Bonnet, S. Meleard Large fluctuations in multi-scale modeling for rest erythropoiesis, in revision for J. Math. Biol..

[15] V. Calvez, S. Figueroa Iglesias, H. Hivert, S. Meleard, A. Melnykova, S. Nordmann. Horizontal gene transfer: numerical comparison between stochastic and deterministic approaches. To appear in ESAIM Proceedings (CEMRACS 2018).

[16] P. Cattiaux, P. Collet, A. Lambert, S. Martinez, S. Meleard, J. San Martin. Quasi-stationarity distributions and diffusion models in population dynamics, Ann. Probab. 37 (2009), no. 5, 1926-1969.

[17] N. Champagnat. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Their Appl. 116 (2006), 1127-1160.

[18] N. Champagnat, S. Meleard. Polymorphic evolution sequence and evolutionary branching. Probab. Theory Related Fields 151 (2011), no. 1-2, 45-94.

[19] N. Champagnat, S. Meleard, V.C. Tran. Stochastic analysis of emergence of evolutionary cyclic behavior in population dynamics with transfer, to appear in Ann. Appl. Probability (2020).

[20] J.R. Chazottes, P. Collet, S. Meleard. Sharp asymptotics for the quasi-stationary distribution of birth-and-death processes. Probab. Theory Related Fields 164 (2016), no. 1-2, 285-332.

[21] J.R. Chazottes, P. Collet, S. Meleard. On time scales and quasi-stationary distributions for multitype birth-and-death processes. Ann. of IHP, Vol. 55, No. 4, 2249-2294 (2019).

[22] J.R. Chazottes, P. Collet, S. Martinez, S. Meleard. Quasi-stationary distributions and resilience: what to get from a sample? J. Ec. polytech. Math. 7 (2020), 943-980.

[23] K.L. Chung, J.B. Walsh. To reverse a Markov process. Acta Mathematica 123, (1969), 225-251.

[24] B. Cloez, P. Gabriel. On an irreducibility type condition for the ergodicity of nonconservative semigroups. Comptes Rendus. Mathematique 358, 6 (2020), 733-742.

[25] P. Collet, S. Meleard, J.A.J. Metz. rigorous model study of the adaptive dynamics of Mendelian diploids. J. Math. Biol. 67 (2013), no. 3, 569-607.

[26] M. Costa, C. Etchegaray, S. Mirrahimi. Survival criterion for a population subject to selection and mutations; Application to temporally piecewise constant environments, Nonlinear Analysis: Real World Applications, Vol. 59, (2021), 103239.

[27] L. Desvillettes, P. E. Jabin, S. Mischler, G. Raoul. On mutation-selection dynamics for continuous structured populations. Commun. Math. Sci. 6(3), (2008), 729-747.

[28] U. Dieckmann, R. Law. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34 (1996), 579-612.

[29] O. Diekmann. A beginner's guide to adaptive dynamics. In Mathematical modelling of population dynamics, volume 63 of Banach Center Publ., Polish Acad. Sci. (2004), 47-86.

[30] O. Diekmann, P. E. Jabin, S. Mischler, B. Perthame. The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach. Theor. Popul. Biol. 67 (2005), 257-271.

[31] D. Donnelly, T.G. Kurtz. Genealogical processes for Fleming-Viot models with selection and recombination. Ann. Appl. Probab. 9(4), (1999), 1091-1148.

[32] M. Doumic, M. Homann, N. Krell, L. Robert. Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli 21 (2015), no. 3, 1760-1799.

[33] M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Stochastic Gene Expression in a Single Cell. Science 297, (2002), no. 5584, 1183-1186.

[34] A.M. Etheridge, T.G. Kurtz. Genealogical constructions of population models. Ann. Probab. 47 (2019), no. 4, 1827-1910.

[35] S; Ethier, T. Kurtz. Markov Processes: characterization and Convergence. John Wiley & Sons, Inc., 1986.

[36] A. Gupta, J.A.J. Metz, V.C. Tran. A new proof for the convergence of an individual based model to the trait substitution sequence. Acta Appl. Math. 131 (2014), 1-27.

[37] S. Figueroa Iglesias, S. Mirrahimi, Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM J. Math. Anal., Vol. 50.5 (2018) pp. 5537-5568.

[38] S. Figueroa Iglesias, S. Mirrahimi. Selection and mutation in a shifting and fluctuating environment, accepted in Comm. Math. Sci., (2021).

[39] N. Fournier, S. Meleard. A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14 (2004), 1880-1919.

[40] S.C. Harris, M.I. Roberts. The many-to-few lemma and multiple spines. Ann. Inst. Henri Poincare Probab. Stat. 53 (2017), no. 1, 226-242.

[41] S.C. Harris, S. Johnston and M.I. Roberts. The coalescent structure of continuous-time Galton-Watson trees. Ann. Appl. Probab. Vol. 30, No 3.1368-1414, 2020.

[42] M. Holzel, A. Bovier, T. Tuting. Plasticity of tumour and immune cells: a source of heterogeneity and a cause of therapy resistance? Nat.Rev. Cancer 13, (2013), 365-376.

[43] P.-E.Jabin. Small populations corrections for selection-mutation models. Netw. Heterog. Media, 7(4), (2012), 805-836.

[44] J.F.C. Kingman. The coalescent. Stochastic Processes and Their Applications 13 (1982), 235-248.

[45] F. Knauer, T. Stiehl, A. Marciniak-Czochra. Oscillations in a white blood cell production model with multiple differentiation stages. J Math Biol 80, (2020), 575-600.

[46] A. Marguet. Uniform sampling in a structured branching population, Bernoulli, 25, 4A (2019), 2649-2695.

[47] S. Meleard, D. Villemonais. Quasi-stationary distributions and population processes. Probab. Surv. 9 (2012), 340-410.

[48] S. Meleard, V.C. Tran. Nonlinear historical superprocess approximations for population models with past dependence. Electron. J. Probab. 17 (2012), no. 47, 1-32.

[49] S. Meleard, V.C. Tran. Trait substitution sequence process and canonical equation for age structured populations. J. Math. Biol. 58 (2009), no. 6, 881-921.

[50] J.A.J. Metz, V.C. Tran. Daphnias: from the individual based model to the large population equation. J. Math. Biol. 66 (2013), no. 4-5, 915-933.

[51] J. A. J. Metz, S. A. H. Geritz, G. Meszena, F. J. A. Jacobs, J. S. van Heerwaarden. Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In Stochastic and spatial structures of dynamical systems (Amsterdam, 1995), Konink. Nederl. Akad.Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45, 183-231, North-Holland, Amsterdam, 1996.

[52] S. Mirrahimi, G. Barles, B. Perthame, P. E. Souganidis. A singular Hamilton-Jacobi equation modeling the tail problem. SIAM J. Math. Anal., (2012), 44(6), 4297-4319.

[53] N.V. Mon Pere, T. Lenaerts, J.M.D.S. Pacheco, D. Dingli. Multistage feedback-driven compartmental dynamics of hematopoiesis. IScience 24, (2021), 102326.

[54] M. Nagasawa. Time reversion of Markov processes. Nagoya Math. J. 24, (1964), 117-204.

[55] S.H. Orkin, LM.I. Zon. hematopoiesis: an evolving paradigm from stem cell biology. Cell 132, (2008), 631-644.

[56] E. Perkins. On the martingale problem for interactive measure-valued branching diffusions, Memoirs of the American Mathematical Society ed., vol. 115(549), American Mathematical Society, May 1995.

[57] B. Perthame. Transport Equations in Biology. Birkhauser 2007.

[58] B. Perthame, G. Barles. Dirac concentration in Lotka-Volterra parabolic PDEs. Indiana Univ. Math. J. (57(7), (2008), 3275-3301.

[59] B. Perthame, M. Gauduchon. Survival thresholds and mortality rates in adaptive dynamics: conciliating deterministic and stochastic simulations. Math. Med. Biol., 27(3), (2010),195-210.

[60] A. Raj, A. van Oudenaarden. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell 135 no. 2, (2008), 216-226.

[61] L. Roques, F. Patout, O. Bonnefon, G. Martin. Adaptation in general temporally changing environments. SIAM J. Appl. Math. 80 (2020), no. 6, 2420-2447.

[62] T. Stiehl, A.D. HO, A. Marciniak-Czochra. Assessing hematopoietic (stem)-cell behavior during regenerative pressure. Adv. Exp. Med. Biol. 844 (2014), 347-367.

[63] D. Waxman, S. Gavrilets. 20 Questions on Adaptive Dynamics. J. Evol. Biol. 18(5), (2005), 1139-1154.

To be appointed

Sylvie Méléard :

• Invited Speaker to ICM 2022 : London 2022.

IMS Medallion Lecture: INFORMS Applied Probability Conference, Nancy 2023.

• Plenary Speaker. Mathematics Panorama, Hausdorff Center, Bonn 2023.