
Probability and Statistics Competitive Exam
International Recruitment of IPParis Schools for Engineering

Cycles

The notions of the mathematics test program (algebra, real analysis) are assumed to be known.
The measure theory and abstract integration theory are out of the scope of this program (in
particular all the measurability issues of functions).

1 Probability

1.1 Random Events

1. Sample space Ω, collection E of events : non empty collection of subsets of Ω closed under
complement and countable unions.

2. Set operations on events : union, intersection, complement, difference...

3. Probability P : function from E to [0, 1] such that P(Ω) = 1, P(∅) = 0, P(A) ≤ P(B) if
A ⊂ B, P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅ and P(∪iAi) =

∑
i P(Ai) if Ai is a sequence

of disjoint sets (Ai ∩Aj = 0 for any i 6= j).

4. Conditional probability on a non negligible event B : P(A|B) = P(A∩B)
P(B)

5. P(∩ni=1Ai) = P(A1)
∏n
k=2 P(Ak|A1 ∩ ... ∩Ak−1)

6. Law of total probability : P(A) =
∑

i P(A|Bi)P(Bi) if P(∪iBi) = 1 and P(Bi ∩ Bj) = 0 for
i 6= j

7. Bayes : P(A|B) = P(B|A)P(A)
P(B) and P(Ak|B) = P(B|Ak)P(Ak)∑

i P(B|Ai)P(Ai)
if P(∪iAi) = 1 and P(Ai∩Aj) =

0 for i 6= j

8. Independence of collection of events and pair-wise independence of events.

9. Borel-Cantelli Lemma : if (An)n≥0 is a sequence of events of E such that
∑

n≥0 P(An) <∞
then P(lim supnAn) = 0.
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1.2 Real random variables, random vectors

1. Definition of random variable : Function X from Ω in R such that {ω ∈ Ω : X(ω) ≤ a} ∈ E
for any a.

2. Notation P(X ∈ A), P(X > b), ... for P({ω ∈ Ω : X(ω) ∈ A}), P({ω ∈ Ω : X(ω) > b}), ...

3. Cumulative distribution function : FX(a) = P(X−1(]−∞; a])) = P(X ≤ a)

4. Support S(X) : smallest closed set F of R such that P(X ∈ F ) = 1.

5. Discrete random variable : random variable with a finite or countable support

6. Random variable admitting a density : random variable X with a cumulative distribution
function admitting the integral representation FX(a) =

∫ a
−∞ fX(x)dx, fX is the probability

density function of X

7. Random vectorX = (Xi)i=1,...,n, (multivariate) cumulative distribution function FX(x1, ..., xn) =

P(∩ni=1{Xi ≤ xi}), support S(X) (smallest closed set F of Rn such that P(X ∈ F ) = 1),
discret case (S(X) finite or countable), multivariate density if FX admits the integral rep-
resentation FX(x1, ..., xn) =

∫ x1
−∞ ...

∫ xn
−∞ fX(x1, ..., xn)dx1...dxn

8. Non negative random variable : random variable X such that FX(a) = 0 for any a < 0

9. Expectation of g(X) for g non negative function on S(X) and X random variable or vector
: E(g(X)) =

∑
x∈S(X) g(x)P(X = x) if X is discrete, E(g(X)) =

∫
S(X) g(x)fX(x)dx if

X admits a density. For any functions g on S(X), the expectation of g(X) is defined
if E(|g(X)|) < ∞ and in that case E(g(X)) =

∑
x∈S(X) g(x)P(X = x) for X discrete,

E(g(X)) =
∫
S(X) g(x)fX(x)dx if X admits a density.

10. The expectation of a random vector is the vector of the expectation of each component.

11. Variance, covariance of random variables : V(X) = E
(

(X − E(X))2
)

= E(X2)−E(X)2 and
Cov(X,Y ) = E ((X − E(X))(Y − E(Y ))) = E(XY ) − E(X)E(Y ). Standard deviation of a
random variable :

√
V(X).

12. Variance-covariance matrix of a random vector (X1, ..., Xn) : square matrix of size n × n
with components Cov(Xi, Xj)

13. Markov Inequality : P(|X| ≥ a) ≤ E(|X|)
a

14. Bienaymé-Tchebychev Inequality : P(|X − E(X)| ≥ a) ≤ V(X)
a2

15. Triangle Inequality: |E(X)| ≤ E(|X|)

16. Indépendence of random variables (Xi)i=1,...,n : we admit the equivalence of the following
definition

(a) F(X1,...,Xn)(x1, ..., xn) =
∏n
i=1 FXi(xi)
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(b) For any non negative functions gi : E (
∏n
i=1 gi(Xi)) =

∏n
i=1 E (gi(Xi))

(c) For any bounded functions gi : E (
∏n
i=1 gi(Xi)) =

∏n
i=1 E (gi(Xi))

(d) For any functions gi such that E (
∏n
i=1 |gi(Xi)|) <∞ and E (|gi(Xi)|) <∞ :

E (
∏n
i=1 gi(Xi)) =

∏n
i=1 E (gi(Xi))

And when (Xi)i,...,n admits a density : f(X1,...,Xn)(x1, ..., xn) =
∏n
i=1 fXi(xi).

17. The random variables (Xi)i=1,...,n are identically distributed if they share the same cumula-
tive distribution.

18. The random variables (Xi)i=1,...,n are iid if they are independent and identically distributed

19. Sequence (Xi)i≥1 of independent random variables (respectively identically distributed) : if
for any n ≥ 2, the variables (Xi)1≤i≤n are independent (respectively identically distributed)

20. Ability to compute moments of usual distributions : uniform, Gaussian, Poisson, Bernoulli,
binomial, exponential, Gamma, ...

21. Simple example of transfer : from the density of X, applicants are expected be able to
recover the density of aX + b, X2, exp(X),...

1.3 Convergence of random variables

1. Almost-sure convergence of Xn to X: P({ω ∈ Ω : limn→∞Xn(ω) = X(ω)}) = 1

2. Convergence in Lp (for p ≥ 1): let a sequence o random variablesXn such that E(|Xn|p) <∞
for any n ≥ 0 and X a random variable such that E(|X|p) <∞, Xn converges to X in Lp if
E(|Xn −X|p) tends to 0 when n tends to ∞.

3. Convergence in probability : the sequence of random variables Xn converges to the random
variable X if for any ε > 0 P(|Xn −X| > ε) tends to 0 when n tends to ∞.

4. Convergence in law or in distribution of Xn to X: At any continuity point x of FX , FXn(x)

converges to FX(x). Other equivalent condition :E(f(Xn)) converges to E(f(X)) for any
continuous and bounded f ; or for any bounded Lipschitz f ; or E(exp(itXn)) converges to
E(exp(itX)) for any t ∈ R (Levy continuity theorem).

5. Relation between the various convergences : convergence in Lp implies convergence in Lq

for p ≥ q ≥ 1, convergence in Lp implies convergence in probability, almost-sure conver-
gence implies convergence in probability, convergence in probability implies convergence in
distribution. Theorem of dominated convergence to show the convergence in Lp when the
almost-sure convergence holds.

6. Continuous mapping theorem for the convergence in probability, almost-sure, in distribution.
If Xn converges to X in probability, (respectively in distribution, respectively almost-surely)
and if g is a continuous function continue at any point of S(X) then g(Xn) converges to
g(X) in probability (respectively in distribution, respectively almost-surely).
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7. Slutsky Lemma: if Xn converges in distribution to X and Yn converges in distribution
to a constant c, then Xn + Yn converges in distribution to X + c and YnXn converges in
distribution to cX.

1.4 Statistics

1. Definition of a parametric model, parametrized by Θ ⊂ RK : {(Pθ)θ∈Θ,Θ}, as a collection of
probability distributions indexed by Θ.

2. Identification of θ ∈ Θ in the statistical model: θ is identifiable if Pθ 6= Pθ′ as soon as θ 6= θ′

3. Weak law of large numbers for variables with finite variance: if the Xi are iid variables, such
that E(X2

1 ) < ∞ then 1
n

∑n
i=1Xi converges in probability to E(X1). Be able to prove this

with Bienaymé-Tchebychev inequality.

4. Strong law of large number for variables with finite expectation: if the Xi are iid variables,
such that E(|X1|) <∞ then 1

n

∑n
i=1Xi converges almost-surely, in L1 and in probability to

E(X1).

5. Central Limit Theorem : if Xi are iid variables, such that E(X2
1 ) <∞ then

√
n

(
1

n

n∑
i=1

Xi − E(X1)

)
/
√

V(X1)

converges in distribution to the standard Gaussian distribution, in particular :

P

(
a
√

V(X1) ≤
√
n

(
1

n

n∑
i=1

Xi − E(X1)

)
≤ b
√
V(X1)

)

converges to
1√
2π

∫ b

a
exp

(
− t

2

2

)
dt.

6. Definition of an estimator : An estimator of g(θ) ∈ Rk is a random variable (or a random
vector if k > 1) of the form Tn = ϕn(X1, ..., Xn) where X1, ..., Xn are n random variables
for which the realizations are observed. The function ϕn does not depend on θ

7. The bias of an estimator is B = E (Tn)− g(θ), an unbiased estimator of g(θ) is an estimator
Tn such that E (Tn) = g(θ)

8. Quadratic risk of an estimator Tn (for g(θ) ∈ R) : R = E
(
|Tn − g(θ)|2

)
9. Decomposition of the quadratic risk Tn (for g(θ) ∈ R) : R = B2 +V , where V is the variance

of Tn.

10. A consistent estimator is an estimator Tn that converges in probability to g(θ). A strongly
consistent estimator is an estimator Tn that converges almost-surely to g(θ).
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11. A confidence interval of g(θ) ∈ R of confidence level 1− α (α ∈ [0, 1]) of g(θ) is an interval
[Un, Vn] such that :

- Un and Vn are some functions of observations (X1, ..., Xn) and of n but not of θ,

- P(Un ≤ Vn) = 1,

- P(Un ≤ g(θ) ≤ Vn) ≥ 1− α.

12. An asymptotic confidence interval of g(θ) ∈ R of confidence level 1−α (α ∈ [0, 1]) of g(θ) is
a sequence of intervals [Un, Vn] such that :

- Un and Vn are some functions of observations (X1, ..., Xn) and of n but not of θ,

- P(Un ≤ Vn) = 1,

- P(Un ≤ g(θ) ≤ Vn) ≥ 1− αn for a sequence αn tending to α.
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