Security challenges and opportunities in emerging device technologies

A case study on flexible electronics

Nele Mentens

n.mentens@liacs.leidenuniv.nl / nele.mentens@kuleuven.be

International Winter School on Microarchitectural Security, December 5-9, 2022

Security challenges and opportunities in emerging device technologies

A case study on flexible electronics

Emerging Technologies

- International Roadmap for Devices and Systems (IRDS) [1]
 - Is the successor of the International Technology Roadmap for Semiconductors (ITRS) since 2016
 - Predicts the evolution of electronic devices and systems
 - Describes the evolution towards deep-submicron technologies
 - Also mentions devices and systems that do not rely on bulk silicon technology
 - Publishes annual reports by several International Focus Teams (IFT)

Emerging Technologies

- International Roadmap for Devices and Systems (IRDS) [1]
 - Is the successor of the International Technology Roadmap for Semiconductors (ITRS) since 2016
 - Predicts the evolution of electronic devices and systems
 - Describes the evolution towards deep-submicron technologies
 - Also mentions devices and systems that do not rely on bulk silicon technology
 - Publishes annual reports by several International Focus Teams (IFT)
- Examples of emerging technologies
 - Electronics on flexible foil (IFT "More than Moore") -> low cost, flexibility
 - Memristors (IFT "Beyond CMOS") -> high performance, high density
 - Ultra low leakage technologies, like fully depleted silicon on insulator (IFT "More Moore") -> low power consumption

[1] "International roadmap for devices and systems - executive summary," https://irds.ieee.org/images/files/pdf/2020/2020IRDS ES.pdf, 2020.

Emerging Technologies

- International Roadmap for Devices and Systems (IRDS) [1]
 - Is the successor of the International Technology Roadmap for Semiconductors (ITRS) since 2016
 - Predicts the evolution of electronic devices and systems
 - Describes the evolution towards deep-submicron technologies
 - Also mentions devices and systems that do not rely on bulk silicon technology
 - Publishes annual reports by several International Focus Teams (IFT)
- Examples of emerging technologies
 - Electronics on flexible foil (IFT "More than Moore") -> low cost, flexibility
 - Memristors (IFT "Beyond CMOS") -> high performance, high density
 - Ultra low leakage technologies, like fully depleted silicon on insulator (IFT "More Moore") -> low power consumption
- The IRDS also emphasizes that **security** is an important requirement

[1] "International roadmap for devices and systems - executive summary," https://irds.ieee.org/images/files/pdf/2020/2020IRDS ES.pdf, 2020.

Security challenges and opportunities in emerging device technologies A case study on flexible electronics

•

Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

 Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

Security challenges and opportunities in emerging device technologies

A case study on flexible electronics

Flexible electronics on plastics Displays

- Widespread commercial use in flexible displays
- Millions of thin-film transistors controlling the pixels

Flexible electronics on plastics Digital circuits

- Large potential for flexible digital circuits in (passive) RFID/NFC chips, integrated in paper or plastics
- Examples:
 - Flexible labels
 - Intelligent packages
 - Smart blisters
 - Electronic medical patches

Flexible electronics on plastics Digital circuits

- Circuits that have already been fabricated:
 - NFC transponder
 - Small microprocessors with limited instruction sets

Flexible electronics on plastics Transistor technology

- Several thin-film transistor (TFT) technologies exist
- Amorphous metal-oxide TFTs show the best combination of high performance and low processing cost
- Materials:
 - Mo = molybdenum
 - SiO_2 = silicon dioxide
 - SiN = silicon nitride
 - a-IGZO = amorphous indium gallium zinc oxide

Flexible electronics on plastics Comparison with silicon chips

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

Digital crypto circuit

- Cryptographic algorithms can be executed on
 - A general-purpose processor
 - Dedicated digital hardware

Digital crypto circuit

- Cryptographic algorithms can be executed on
 - A general-purpose processor
 - Dedicated digital hardware
- On flexible foil, dedicated digital hardware is the best (or only) option
 - Existing general-purpose processors are not (yet) able to do crypto
 - Besides crypto, only limited functionality is needed on the flexible tag

KTANTAN32 [2]

- Block size: 32 bits
- Key size: 80 bits
- Fixed key, burnt into the device

[2] De Cannière et al., "KATAN and KTANTAN—a family of small and efficient hardware-oriented block ciphers," CHES 2009, p. 272-288.

KU LEUVEN

start

0

- 11111110

Serial architecture

- Inputs: start, clk, pt
- Outputs: ready, ct

clk

Pseudo-CMOS logic

- 6 thin-film transistors (TFTs) in one NAND gate
- Pull-Down Network (PDN) repeated
- $V_{bias} > V_{DD} + 2V_T \rightarrow rail-to-rail output$

KU LEUVEN

a-IGZO semiconductor

- Mo = molybdenum
- $SiO_2 = silicon dioxide$
- SiN = silicon nitride
- a-IGZO = amorphous indium gallium zinc oxide

Digital crypto circuit Lay-out

- 4044 TFTs
- 331.5 mm²

\rightarrow 48 pads for I/O, $V_{\text{DD}}, V_{\text{bias}}$ and GND

Digital crypto circuit Measurement setup

80-bit key of KTANTAN32

KU LEUVEN

level shifters

Digital crypto circuit Measurement results

- Fixed 80-bit key: 07C1F07C1F07C1F07C1F (hex)
- 1000 plaintexts automatically applied
- 1000 correct ciphertexts for:
 - V_{DD} = 10 V and V_{bias} = 15 V
 - V_{DD} = 11 V and V_{bias} = 16.5 V
- Maximum clock frequency = 10 kHz
- Number of cycles:
 - 32 (for shifting in the plaintext)
 - 254 (for the actual encryption)
 - 32 (for shifting out the ciphertext)
- Total latency = 31.8 ms

KU LEUVEN

Universiteit

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

Secure key storage

• Key storage mechanisms:

- One-time programmable (OTP) memory with fuses
- Non-volatile memory (e.g. flash)
- Battery-backed volatile memory (e.g. SRAM)

KU LEUVEN

Secure key storage

- Key storage mechanisms:
 - One-time programmable (OTP) memory with fuses
 - Non-volatile memory (e.g. flash)
 - Battery-backed volatile memory (e.g. SRAM)
- On flexible foil
 - Electrically readable/writable non-volatile memory does not (yet) exist
 - OTP storage mechanisms are the only option (so far)

KU LEUVEN

Secure key storage

- Key storage mechanisms:
 - One-time programmable (OTP) memory with fuses
 - Non-volatile memory (e.g. flash)
 - Battery-backed volatile memory (e.g. SRAM)
- On flexible foil
 - Electrically readable/writable non-volatile memory does not (yet) exist
 - OTP storage mechanisms are the only option (so far)
 - $\circ~$ Additive method: connect wires with conductive ink
 - $\circ~$ Modificative method: cut wires with a laser

- Additive method:
 - Interdigitated finger structure
 - Connect wires with conductive ink

- Additive method:
 - Interdigitated finger structure
 - Connect wires with conductive ink

- Additive method:
 - Interdigitated finger structure
 - Connect wires with conductive ink

- Additive method:
 - Interdigitated finger structure
 - Connect wires with conductive ink
- Modificative method:
 - Initial connection to 0 and 1
 - Cut wires with a laser

- Additive method:
 - Interdigitated finger structure
 - Connect wires with conductive ink
- Modificative method:
 - Initial connection to 0 and 1
 - Cut wires with a laser

- Additive method:
 - Interdigitated finger structure
 - Connect wires with conductive ink
- Modificative method:
 - Initial connection to 0 and 1
 - Cut wires with a laser

Secure key storage Modificative method based on lasering

Secure key storage Modificative method based on lasering

Secure key storage Modificative method based on lasering

KU LEUVEN

PROBLEM: The key bits can easily be read out using a microscope (chips are not packaged, features are large)

The temperature change caused by lasering, shifts the threshold voltage (V_T) and thus the I_d - V_q graph

With a fixed input voltage (V_{neg}), the thinfilm transistor (TFT) switches from off to on

AFTER LASERING

TFT microscope images

PROBLEM:

The difference is visible between a TFT that has been lasered and a TFT that has not been lasered

lasered

SOLUTION:

Apply different settings of the laser to cause different V_T shifts that cannot be visually distinguished

EXPLORATION OF DIFFERENT SETTINGS:

- Blue: before lasering
- Red: after lasering

SOLUTION:

Apply different settings of the laser to cause different V_T shifts that cannot be visually distinguished

EXPLORATION OF DIFFERENT SETTINGS:

- Blue: before lasering
- Red: after lasering

SOLUTION:

Apply different settings of the laser to cause different V_T shifts that cannot be visually distinguished:

- Setting 1 (top image): attenuation of 45 dB in low energy mode; one pulse applied
- Setting 2 (bottom image): attenuation of 35 dB in low energy mode; two pulses applied

Secure key storage Alternative: Read-out prevention with ink

- Additive method instead of modificative method:
 - Add ink at the top and the bottom of the chip
 - The ink should be:
 - Non-conductive
 - Non-transparent
 - Insoluble

Secure key storage

Alternative: Physical(ly) Unclonable Function (PUF)

- Physical(ly) Unclonable Functions (PUFs):
 - A PUF generates a unique value based on physical variation
 - The difference with traditional key storage mechanisms is that PUFs do not store a key but generate a key when the power is turned on

Secure key storage Alternative: Physical(ly) Unclonable Function (PUF)

- Physical(ly) Unclonable Functions (PUFs) use process variation for:
 - Device-unique key generation
 - Device authentication

Source: Ganji et al., CHES 2019 tutorial

Source: Alioto, M., "Enabling the Internet of Things", 2017

Secure key storage

KU LEUVEN

Alternative: Physical(ly) Unclonable Function (PUF)

- PUF properties
 - Easy evaluation
 - Uniqueness
 - Reproducibility/reliability
 - Different operating conditions such as temperature and supply voltage

- Unclonability
- Unpredictability
- One-way function
- Tamper evidence

Secure key storage

KU LEUVEN

Alternative: Physical(ly) Unclonable Function (PUF)

- PUF properties \rightarrow challenges
 - Easy evaluation
 - Uniqueness
 - Reproducibility/reliability
 - Different operating conditions such as temperature and supply voltage
 - Digital circuits continue to operate correctly when they are bended or stretched, but PUFs
 might not produce a reliable unique output when bended or stretched
 - Unclonability
 - Unpredictability
 - One-way function
 - Tamper evidence

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

 Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

Nonce generator

- To generate a nonce, we either need a True Random Number Generator (TRNG) or non-volatile storage
 - Electrically readable/writable non-volatile memory does not exist (yet) in the considered technology
 - The slope of the input-output characteristic of pseudo-CMOS gates is less steep compared to CMOS gates, so the design of TRNGs needs to be explored

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

Physical attacks

- Side-channel analysis attacks extract secret information from side channels
- Fault analysis attacks introduce computational errors to expose secret information

• Illustrative example to explain the hardware requirements of a lightweight device (e.g. a passive RFID or NFC tag) → reader authentication protocol

Universiteit Leiden

Remaining challenges

- The delay of the authentication protocol needs to be compliant to NFC standards
- Mutual authentication causes an even longer delay
- Public-key cryptography requires even more transistors

Security challenges and opportunities in emerging device technologies

A case study on flexible electronics

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

- [3] Yang et al., "Memristor-based chaotic circuit for text/image encryption and decryption," ISCID, 2015.
- [4] Mishra et al., "Memristor based cryptographic information processing for secured communication systems," ICCSD, 2020.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

- [5] Wang et al., "A novel true random number generator design leveraging emerging memristor technology," GLSVLSI, 2015.
- [6] Uddin et al., "On the theoretical analysis of memristor based true random number generator," GLSVLSI, 2019.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[7] Liu et al., "A highly reliable and tamper-resistant RRAM PUF: Design and experimental validation," HOST, 2016.
[8] Uddin et al., "Techniques for improved reliability in memristive crossbar PUF circuits," ISVLSI, 2016.
[9] Pang et al., "A novel PUF against machine learning attack: Implementation on a 16 Mb RRAM chip," IEDM, 2017.
[10] Koeberl et al., "Memristor PUFs: a new generation of memory-based physically unclonable functions," DATE, 2013.
[11] Rose et al., "Foundations of memristor based PUF architectures," NANOARCH, 2013.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[12] Chatterjee et al., "Memristor based arbiter PUF: Cryptanalysis threat and its mitigation," VLSID, 2016.

[13] Govindaraj and Ghosh, "A strong arbiter PUF using resistive RAM within 1T-1R memory architecture," ICCD, 2016.[14] Uddin et al., "Robustness analysis of a memristive crossbar PUF against modeling attacks," IEEE TNANO, 2017.

[15] Zeitouni et al., "On the security of strong memristor-based physically unclonable functions," DAC, 2020.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[16] Danger et al., "Analysis of mixed PUF-TRNG circuit based on SR-latches in FD-SOI technology," DSD, 2018.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[17] Dutertre et al., "Sensitivity to laser fault injection: CMOS FD-SOI vs. CMOS bulk," IEEE TDMR, 2018.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[18] Kamel et al., "Side-channel analysis of a learning parity with physical noise processor," JCEN, 2020.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[19] Beckers et al., "Energy and side-channel security evaluation of near-threshold cryptographic circuits in 28nm FD-SOI technology," ACM CF, 2022.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[20] Erozan et al., "Design and evaluation of physical unclonable function for inorganic printed electronics," ISQED, 2018.

[21] Erozan et al., "Inkjet-printed EGFET-based physical unclonable function—design, evaluation, and fabrication," IEEE TVLSI, 2018.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[22] Erozan et al., "A compact low-voltage true random number generator based on inkjet printing technology," IEEE TVLSI, 2020.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[23] Kuribara et al., "Organic physically unclonable function on flexible substrate operable at 2 V for IoT/IoE security applications," Organic Electronics, 2017.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

[24] Mentens et al., "Security on plastics: Fake or real?" TCHES, 2019.

Emerging device	PUF	TRNG	Crypto	SCA	FA	Obfus.
Memristor	\checkmark	\checkmark	\checkmark			
FD-SOI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Flex electronics						
- EGFET	\checkmark	\checkmark				
- Organic TFT	\checkmark					
- Metal-oxide TFT			\checkmark			\checkmark

Overview in:

[25] Batina et al., "Invited: Security Beyond Bulk Silicon: Opportunities and Challenges of Emerging Devices", DAC, 2021.

Thanks! Questions?

Nele Mentens

n.mentens@liacs.leidenuniv.nl / nele.mentens@kuleuven.be

International Winter School on Microarchitectural Security, December 5-9, 2022