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Emerging Technologies

« International Roadmap for Devices and Systems (IRDS) [1]

Is the successor of the International Technology Roadmap for Semiconductors (ITRS) since 2016

Predicts the evolution of electronic devices and systems

Describes the evolution towards deep-submicron technologies

Also mentions devices and systems that do not rely on bulk silicon technology

Publishes annual reports by several International Focus Teams (IFT)

[1] “International roadmap for devices and systems - executive summary,” https://irds.ieee.org/images/files/pdf/2020/2020IRDS ES.pdf, 2020.
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« International Roadmap for Devices and Systems (IRDS) [1]

* Is the successor of the International Technology Roadmap for Semiconductors (ITRS) since 2016

Predicts the evolution of electronic devices and systems

Describes the evolution towards deep-submicron technologies

Also mentions devices and systems that do not rely on bulk silicon technology

Publishes annual reports by several International Focus Teams (IFT)

- Examples of emerging technologies

* Electronics on flexible foil (IFT “More than Moore”) -> low cost, flexibility
» Memristors (IFT “Beyond CMOS”) -> high performance, high density

 Ultra low leakage technologies, like fully depleted silicon on insulator (IFT “More Moore”) -> low power consumption

[1] “International roadmap for devices and systems - executive summary,” https://irds.ieee.org/images/files/pdf/2020/2020IRDS ES.pdf, 2020.
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Emerging Technologies

« International Roadmap for Devices and Systems (IRDS) [1]

* Is the successor of the International Technology Roadmap for Semiconductors (ITRS) since 2016

Predicts the evolution of electronic devices and systems

Describes the evolution towards deep-submicron technologies

Also mentions devices and systems that do not rely on bulk silicon technology

Publishes annual reports by several International Focus Teams (IFT)

- Examples of emerging technologies

* Electronics on flexible foil (IFT “More than Moore”) -> low cost, flexibility
» Memristors (IFT “Beyond CMOS”) -> high performance, high density

 Ultra low leakage technologies, like fully depleted silicon on insulator (IFT “More Moore”) -> low power consumption

« The IRDS also emphasizes that security is an important requirement

[1] “International roadmap for devices and systems - executive summary,” https://irds.ieee.org/images/files/pdf/2020/2020IRDS ES.pdf, 2020.
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Hardware security requirements

 Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) - reader authentication protocol
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Hardware Securiw re quirements

 Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) - reader authentication protocol
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 Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) - reader authentication protocol
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« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol
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« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol
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« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol

prm—
1 ower .
Hardvyare security cryptographic S cryptographic
requirements to key K, ] key K,
protect against a stored on data St‘;l"ed on
the reader the tag
remote adversary? 0 RFID/NFC tag
reader

r, generate noncer, Nonce
€< generator

compute T, = PRF(r},)
%

compute T, = PRF(r,) ﬁ Digita] crypto

verify T, = T, circuit
to authenticate reader




£ Universitelt

Hardware security requirements

« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol
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Hardware security requirements

Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol
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« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol
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« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol
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Flexible electronics on plastics
Displays

» Widespread commercial use in flexible displays

« Millions of thin-film transistors controlling the pixels
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« Large potential for flexible digital
circuits in (passive) RFID/NFC chips,
integrated in paper or plastics

« Examples:

- Flexible labels
- Intelligent packages
- Smart blisters

- Electronic medical patches




Flexible electronics on plastics
Digital circuits

 Circuits that have already been fabricated:

- NFC transponder

- Small microprocessors with limited instruction sets

/ N

¢ \\/
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Transistor technology U LEWVEN

« Several thin-film transistor (TFT) technologies exist

« Amorphous metal-oxide TFTs show the best combination of high performance
and low processing cost

source (Mo) drain (Mo) metal 2 layer (Mo)
[ ] 1 ®
Materials: e (o) | |
ate dielectric _mter-r_netE!I vid
- Mo = molybdenum & (si0,) dielectric (SiN)
semiconductor (a-IGZO) metal 1 layer (Mo)

- Si0,, = silicon dioxide
. . .. substrate (plastic)
- SiN = silicon nitride

- a-IGZO = amorphous indium gallium zinc oxide



Flexible electronics on plastics

Comparison with silicon chips

Core supply
voltage

Charge carrier
mobility

Transistor

density

Semiconductor
type

Cost per 1000
transistors

Flexible?

0.7V

500-1500 cm?/Vs

~ 45 mio per mm?

n-type and p-type

> 0.3 USD

no

5-10 V

~ 10 cm?/Vs

103-104 per cm?

only n-type

yes

3-10V

~ 10 cm?/Vs

104-10° per cm?2

only n-type

> 0.01 USD

yes

If‘> . Higher power consumption
|:> . Lower performance

|f‘> . Larger area

|f‘> . Unipolar logic

|f‘> @ Lower cost

I:> @ Bendable, stretchable



Hardware security requirements

« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol
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Hardware security requirements

« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol
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Digital crypto circuit

* Cryptographic algorithms can be executed on

* A general-purpose processor

* Dedicated digital hardware
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Digital crypto circuit

* Cryptographic algorithms can be executed on

* A general-purpose processor

* Dedicated digital hardware
* On flexible foil, dedicated digital hardware is the best (or only) option

* Existing general-purpose processors are not (yet) able to do crypto

* Besides crypto, only limited functionality is needed on the flexible tag
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Digital crypto circuit
Design choices

KTANTAN32 [2]
« Block size: 32 bits

a]g()rithm « Key size: 80 bits
* Fixed key, burnt into the device

—_—
L
1

[ —

L 3
IR - S

'E'-r'-_" Eﬁq— - i, -

A B A [
t
L

[2] De Canniere et al., “KATAN and KTANTAN—a family of small and efficient hardware-oriented block ciphers,” CHES 20009,
p. 272-288.



Digital crypto circuit
Design choices

Serial architecture
« Inputs: start, clk, pt

* Outputs: ready, ct el —, o —
Vg ] gbits
: /10— ready
non-linear | 8 bits - 4t X shits

architecture : oge [
key ;;;i;;:[;;g;;;;;j (hon-linear feedback

iifl logic v

ka kb ready

ready start start
J —clk l—CC:ready — clk |

cto—( [V i 120V 1

<+ L1 — L2 le—.|

|1O 0 <
N
linear
feedback

ka

Nar
N
Var
\J

19 bits 4~

13 bits /Nf -
linear
feedback
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Design choices T

Pseudo-CMOS logic

6 thin-film transistors (TFTs) in one NAND gate
e Pull-Down Network (PDN) repeated
* Vi > Vpp + 2V - rail-to-rail output

_beas VDD
gate _Ia _Ii
Vout
PDN PDN




Digital crypto circuit

Design choices

transistor

a-1GZ0 semiconductor

Mo = molybdenum

Si0,, = silicon dioxide

SiN = silicon nitride

a-IGZO = amorphous indium gallium zinc oxide

source (Mo) drain (Mo) metal 2 layer (Mo)
gate (Mo) ) :
te dielectri inter-metal via
gate !e ectric dielectric (SiN)
(Si0,)

semiconductor (a-1GZO) metal 1 layer (Mo)

substrate (plastic)



Digital crypto circuit
Lay-out

. 19.5 mm

80-bit key of KTANTAN32
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Digital crypto circuit

80-bit key of KTANTAN32

Measurement setup

=
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level shifters
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Measurement results U LEWVEN
« Fixed 80-bit key: 07C1F07C1F07C1F07C1F (hex)

* 1000 plaintexts automatically applied

* 1000 correct ciphertexts for:

- Vpp=10Vand V,;,,, =15V
- Vpp=11Vand V., =16.5V

e Maximum clock frequency = 10 kHz

* Number of cycles:

- 32 (for shifting in the plaintext)
- 254 (for the actual encryption)
- 32 (for shifting out the ciphertext)

« Total latency = 31.8 ms



Hardware security requirements

« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol

— - E— =
: @ Secure key storage U
Hardware security eryptographic oS cryptographic
requlremer}ts to key K, ata ‘ E key ;{, Protection against
protect against a stored on stored on
errraE adkerar the reader the tag IP theft
e e flexible _ ——
reader RFID/NFC tag Protection against
: hysical attacks
Hardware security phy
requirements to
protect against a r, generate noncery ﬁ Nonce
physical adversary? — generator
compute T, = PRF(r},)
Tl
—_—

compute T, = PRF(r,) ﬁ Digita] crypto J

verify T, = T, circuit
to authenticate reader
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Secure key storage

» Key storage mechanisms:

- One-time programmable (OTP) memory with fuses

- Non-volatile memory (e.g. flash)

- Battery-backed volatile memory (e.g. SRAM)




Secure key storage

° Key storage mechanisms:
- One-time programmable (OTP) memory with fuses
* On flexible foil

- Electrically readable/writable non-volatile memory does not (yet) exist

- OTP storage mechanisms are the only option (so far)
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Secure key storage

° Key storage mechanisms:
- One-time programmable (OTP) memory with fuses
* On flexible foil

- Electrically readable/writable non-volatile memory does not (yet) exist

- OTP storage mechanisms are the only option (so far)
o Additive method: connect wires with conductive ink

o Modificative method: cut wires with a laser
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One-time programmable key storage ULEUVEN

9] 1
e Additive method:

- Interdigitated finger structure
W_HJ_‘ mm - Connect wires with conductive ink

key bit
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One-time programmable key storage ULEUVEN
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e Additive method:

- Interdigitated finger structure

- Connect wires with conductive ink

key bit = 1




Secure key storage
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One-time programmable key storage ULEUVEN

key bit = 0

e Additive method:

- Interdigitated finger structure

- Connect wires with conductive ink




Secure key storage
One-time programmable key storage

O 1

 Modificative method:

- Initial connection to 0 and 1

‘ - Cut wires with a laser

key bit

Pl P
& i
5

it Universiteit
A& Leiden

By




r|\°\

Secure key storage

S

One-time programmable key storage ULEUVEN
O 1
‘  Modificative method:
- Initial connection to 0 and 1

‘ - Cut wires with a laser

key bit = 1



Secure key storage i
One-time programmable key storage T
O 1

‘  Modificative method:

- Initial connection to 0 and 1

- Cut wires with a laser




Secure key storage
Modificative method based on lasering [ uLevven

_— power rail (Vpp)
— ground rail (GND)

— key bits 26-36

> digital logic
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Modificative method based on lasering [ uLevven

_— power rail (Vpp)
— ground rail (GND)

— key bits 26-36

> digital logic
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Modificative method based on lasering [ uLevven

— power rail (Vpp)
— ground rail (GND)

left wire cut by laser «— — right wire cut by laser

key bit=1 ) L key bit=0
(connectionto V) (connectionto GND)

PROBLEM: The key bits can easily be read out using a microscope
(chips are not packaged, features are large)




£4% Universitelt

Secure key storage

Leiden
Read-out prevention with lasering ' LewvEn
lg The temperature change

caused by lasering, shifts
the threshold voltage (V)

W and thus the I; - V, graph
transistor

switches from

’I
s
rd
s
I
I
!
/ off to on
I
]
. @
|
I

i >
V.’ V 4 vV
. " J ’ With a fixed input
@ ﬂ voltage (V,,,), the thin-
laser causes V; to shift film transistor (TFT)

switches from off to on
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Read-out prevention with lasering ' LewvEn

O 1 BEFORE LASERING

\ Voo

Vnegﬂ[ key bit = floating
_
GND
key bit = floating



Secure key storage
Read-out prevention with lasering

O 1 BEFORE LASERING

Vo

y ﬂﬂ
neg — key bit = floating
_

GND

key bit = 0

AFTER LASERING

3
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Read-out prevention with lasering ' LewvEn
O 1 BEFORE LASERING AFTER LASERING
\ Voo Voo
Vnegﬂ[ key bit = floating Vieg [ key bit=0
. 47 R
GND GND

‘ N
key blt =1 neg [— key bit =1

GND
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Secure key storage
Read-out prevention with lasering ' LewvEn

TFT microscope images

PROBLEM:

The difference is visible between a TFT
that has been lasered and a TFT that
has not been lasered

lasered not lasered
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Secure key storage
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Read-out prevention with lasering ' LewvEn

SOLUTION:

Apply different settings of the laser to cause different V shifts
that cannot be visually distinguished

EXPLORATION OF DIFFERENT SETTINGS: '« | '« /[ '« ' [
+ Blue: T / / g ar i

after lasering T A A A A
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Read-out prevention with lasering ' LewvEn

SOLUTION:

Apply different settings of the laser to cause different V shifts
that cannot be visually distinguished

EXPLORATION OF DIFFERENT SETTINGS: '« | '« /[ '« ' [
+ Blue: T / / g ar i

after lasering A A A A= A




Secure key storage
Read-out prevention with lasering ' LewvEn

o 21 SOLUTION:
10:6 /'/ Apply different settings of the laser to
\_

cause different V; shifts that cannot be
visually distinguished:

10—10 |

rain Current [A]

D
=
o

-

N

OFF <——— t=cem- =

oL |« Setting 1 (top image): attenuation of
e Noitege 1l 45 dB in low energy mode; one pulse

-5V

applied
o - Setting 2 (bottom image): attenuation
§ 100] of 35 dB in }ow energy mode; two
S 1010 pulses applied
5 1012 N
OFF 4= fo==m-
1070 5 0 5 10

/ Gate Voltage [V]
-5V
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Alternative: Read-out prevention with ink u LewVEN

* Additive method instead of modificative method:

- Add ink at the top and the bottom of the chip
- The ink should be:

= Non-conductive

= Non-transparent

= Insoluble
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Alternative: Physical(ly) Unclonable Function (PUF) ' LEUVEN
» Physical(ly) Unclonable Functions (PUFs):

- A PUF generates a unique value based on physical variation

- The difference with traditional key storage mechanisms is that PUFs do not store a
key but generate a key when the power is turned on




Secure key storage

Alternative: Physical(ly) Unclonable Function (PUF)
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« Physical(ly) Unclonable Functions (PUFs) use process variation for:

- Device-unique key generation

- Device authentication

v v
EEEN EEEN
ol [ 1= . al | Is
sl 2= "=l D=
(1 1 1 1 1 1
v v
r r
o * le

3, - %

Source: Ganji et al., CHES 2019 tutorial

(LR
1o
o110
Challenge Set
q Enroliment
B donein a
— e secure
PUF environment
Database
Server -
1"
L]
Response X

— e —— = Same challenge set apphed on the same PUF

Challenge for X
€7
— -

/ PUF
Database %sp se X Response
Server @
authentic
W

Source: Alioto, M., “Enabling the Internet of Things”, 2017

Authentication
done in an
unsecure
environment
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Secure key storage
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Alternative: Physical(ly) Unclonable Function (PUF) ' LEUVEN
« PUF properties

- Easy evaluation
- Uniqueness
- Reproducibility/reliability

= Different operating conditions such as temperature and supply voltage

- Unclonability
- Unpredictability
- One-way function

- Tamper evidence



Secure key storage
Alternative: Physical(ly) Unclonable Function (PUF) ' LEUVEN

« PUF properties — challenges

- Easy evaluation
- Uniqueness
- Reproducibility/reliability
= Different operating conditions such as temperature and supply voltage

= Digital circuits continue to operate correctly when they are bended or stretched, but PUFs
might not produce a reliable unique output when bended or stretched

- Unclonability
- Unpredictability
- One-way function

- Tamper evidence



Hardware security requirements

« Illustrative example to explain the hardware requirements of a lightweight device
(e.g. a passive RFID or NFC tag) = reader authentication protocol

. = =] Secure key storage v
Hardware security eryptographic 2o cryptographic
requlremer.lts to key K, i ‘ E key K, z e —
protect against a stored on stored on 1P theft
remote adversary? the reader 5 the tag e
' S flexible P . :
reader RFID/NFC tag Protection against
: hysical attacks
Hardware security phy
requirements to -
] te noncer once
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Nonce generator

» To generate a nonce, we either need a True Random Number Generator (TRNG)
or non-volatile storage

* Electrically readable/writable non-volatile memory does not exist (yet) in the considered
technology

 The slope of the input-output characteristic of pseudo-CMOS gates is less steep compared to
CMOS gates, so the design of TRNGs needs to be explored

Vi n
/

VOUf
/

pseudo-CMOS
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Physical attacks

 Side-channel analysis attacks extract secret information from side channels

« Fault analysis attacks introduce computational errors to expose secret information
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Remaining challenges

« The delay of the authentication protocol needs to be compliant to
NFC standards

« Mutual authentication causes an even longer delay

* Public-key cryptography requires even more transistors




Security challenges and opportunities
in emerging device technologies
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