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Emerging Technologies

• International Roadmap for Devices and Systems (IRDS) [1]

• Is the successor of the International Technology Roadmap for Semiconductors (ITRS) since 2016

• Predicts the evolution of electronic devices and systems

• Describes the evolution towards deep-submicron technologies

• Also mentions devices and systems that do not rely on bulk silicon technology

• Publishes annual reports by several International Focus Teams (IFT) 

[1] “International roadmap for devices and systems - executive summary,” https://irds.ieee.org/images/files/pdf/2020/2020IRDS ES.pdf, 2020.
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• International Roadmap for Devices and Systems (IRDS) [1]

• Is the successor of the International Technology Roadmap for Semiconductors (ITRS) since 2016

• Predicts the evolution of electronic devices and systems

• Describes the evolution towards deep-submicron technologies

• Also mentions devices and systems that do not rely on bulk silicon technology

• Publishes annual reports by several International Focus Teams (IFT) 

• Examples of emerging technologies

• Electronics on flexible foil (IFT “More than Moore”) -> low cost, flexibility

• Memristors (IFT “Beyond CMOS”) -> high performance, high density

• Ultra low leakage technologies, like fully depleted silicon on insulator (IFT “More Moore”) -> low power consumption

• The IRDS also emphasizes that security is an important requirement

[1] “International roadmap for devices and systems - executive summary,” https://irds.ieee.org/images/files/pdf/2020/2020IRDS ES.pdf, 2020.
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Hardware security requirements
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A case study on flexible electronics



Flexible electronics on plastics
Displays

• Widespread commercial use in flexible displays

• Millions of thin-film transistors controlling the pixels



Flexible electronics on plastics
Digital circuits

• Large potential for flexible digital 
circuits in (passive) RFID/NFC chips, 
integrated in paper or plastics

• Examples:

- Flexible labels

- Intelligent packages

- Smart blisters

- Electronic medical patches



Flexible electronics on plastics
Digital circuits

• Circuits that have already been fabricated:

- NFC transponder

- Small microprocessors with limited instruction sets



Flexible electronics on plastics
Transistor technology

• Several thin-film transistor (TFT) technologies exist

• Amorphous metal-oxide TFTs show the best combination of high performance 
and low processing cost

• Materials:

- Mo = molybdenum

- SiO2 = silicon dioxide

- SiN = silicon nitride

- a-IGZO = amorphous indium gallium zinc oxide



Flexible electronics on plastics
Comparison with silicon chips

silicon
(10 nm)

a-IGZO (5 µm) a-IGZO newer
generation

(0.8 µm)

Core supply
voltage

0.7 V 5-10 V 3-10 V

Charge carrier 
mobility

500-1500 cm2/Vs ~ 10 cm2/Vs ~ 10 cm2/Vs

Transistor 
density

~ 45 mio per mm2 103-104 per cm2 104-105 per cm²

Semiconductor 
type

n-type and p-type only n-type only n-type

Cost per 1000 
transistors

> 0.3 USD > 0.01 USD

Flexible? no yes yes

Higher power consumption

Lower performance

Larger area

Unipolar logic

Lower cost

Bendable, stretchable
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• Cryptographic algorithms can be executed on

• A general-purpose processor

• Dedicated digital hardware

• On flexible foil, dedicated digital hardware is the best (or only) option

• Existing general-purpose processors are not (yet) able to do crypto

• Besides crypto, only limited functionality is needed on the flexible tag

Digital crypto circuit
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Digital crypto circuit
Design choices

algorithm

architecture

gate

transistor

KTANTAN32 [2]

[2] De Cannière et al., “KATAN and KTANTAN—a family of small and efficient hardware-oriented block ciphers,” CHES 2009, 
p. 272-288.

• Block size: 32 bits

• Key size: 80 bits

• Fixed key, burnt into the device



Digital crypto circuit
Design choices

Serial architecture

• Inputs: start, clk, pt

• Outputs: ready, ctalgorithm

architecture

gate

transistor



Digital crypto circuit
Design choices

Pseudo-CMOS logic

• 6 thin-film transistors (TFTs) in one NAND gate

• Pull-Down Network (PDN) repeated

• Vbias > VDD + 2VT → rail-to-rail output
algorithm

architecture

gate

transistor



Digital crypto circuit
Design choices

a-IGZO semiconductor

• Mo = molybdenum

• SiO2 = silicon dioxide

• SiN = silicon nitride

• a-IGZO = amorphous indium gallium zinc oxide

algorithm

architecture

gate

transistor



Digital crypto circuit
Lay-out

• 4044 TFTs

• 331.5 mm2

→ 48 pads for I/O, VDD, Vbias and GND



Digital crypto circuit 
Measurement setup

level shifters

probe card

FPGA

chip



Digital crypto circuit
Measurement results

• Fixed 80-bit key: 07C1F07C1F07C1F07C1F (hex)

• 1000 plaintexts automatically applied

• 1000 correct ciphertexts for:

- VDD = 10 V and Vbias = 15 V

- VDD = 11 V and Vbias = 16.5 V

• Maximum clock frequency = 10 kHz

• Number of cycles:

- 32 (for shifting in the plaintext)

- 254 (for the actual encryption)

- 32 (for shifting out the ciphertext)

• Total latency = 31.8 ms



• Illustrative example to explain the hardware requirements of a lightweight device 
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• On flexible foil
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0 1

key bit = 0

• Additive method:

- Interdigitated finger structure

- Connect wires with conductive ink

• Modificative method:

- Initial connection to 0 and 1

- Cut wires with a laser

Secure key storage
One-time programmable key storage



Secure key storage
Modificative method based on lasering
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PROBLEM: The key bits can easily be read out using a microscope

(chips are not packaged, features are large)

Secure key storage
Modificative method based on lasering



Secure key storage
Read-out prevention with lasering

The temperature change 
caused by lasering, shifts
the threshold voltage (VT) 
and thus the Id - Vg graph

With a fixed input 
voltage (Vneg), the thin-

film transistor (TFT) 
switches from off to on 
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Secure key storage
Read-out prevention with lasering
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key bit = 1
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Secure key storage
Read-out prevention with lasering

lasered not lasered

TFT microscope images

PROBLEM:

The difference is visible between a TFT 
that has been lasered and a TFT that
has not been lasered



Secure key storage
Read-out prevention with lasering

SOLUTION:

Apply different settings of the laser to cause different VT shifts
that cannot be visually distinguished

EXPLORATION OF DIFFERENT SETTINGS:

• Blue:

before lasering

• Red:

after lasering
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Secure key storage
Read-out prevention with lasering

SOLUTION:

Apply different settings of the laser to
cause different VT shifts that cannot be
visually distinguished:

• Setting 1 (top image): attenuation of 
45 dB in low energy mode; one pulse 
applied

• Setting 2 (bottom image): attenuation 
of 35 dB in low energy mode; two 
pulses applied



Secure key storage
Alternative: Read-out prevention with ink

• Additive method instead of modificative method:

- Add ink at the top and the bottom of the chip

- The ink should be:

▪ Non-conductive

▪ Non-transparent

▪ Insoluble



Secure key storage
Alternative: Physical(ly) Unclonable Function (PUF)

• Physical(ly) Unclonable Functions (PUFs):

- A PUF generates a unique value based on physical variation

- The difference with traditional key storage mechanisms is that PUFs do not store a 
key but generate a key when the power is turned on



• Physical(ly) Unclonable Functions (PUFs) use process variation for:

- Device-unique key generation

- Device authentication

Source: Ganji et al., CHES 2019 tutorial Source: Alioto, M., “Enabling the Internet of Things”, 2017

Secure key storage
Alternative: Physical(ly) Unclonable Function (PUF)



• PUF properties

- Easy evaluation

- Uniqueness 

- Reproducibility/reliability

▪ Different operating conditions such as temperature and supply voltage

Digital circuits continue to operate correctly when they are bended or stretched, but PUFs
might not produce a reliable unique output

- Unclonability

- Unpredictability

- One-way function

- Tamper evidence

Secure key storage
Alternative: Physical(ly) Unclonable Function (PUF)



• PUF properties

- Easy evaluation

- Uniqueness 

- Reproducibility/reliability

▪ Different operating conditions such as temperature and supply voltage

▪ Digital circuits continue to operate correctly when they are bended or stretched, but PUFs
might not produce a reliable unique output when bended or stretched

- Unclonability

- Unpredictability

- One-way function

- Tamper evidence

→ challenges

Secure key storage
Alternative: Physical(ly) Unclonable Function (PUF)
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• To generate a nonce, we either need a True Random Number Generator (TRNG) 
or non-volatile storage

• Electrically readable/writable non-volatile memory does not exist (yet) in the considered
technology

• The slope of the input-output characteristic of pseudo-CMOS gates is less steep compared to 
CMOS gates, so the design of TRNGs needs to be explored

pseudo-CMOS CMOS

Nonce generator
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• Side-channel analysis attacks extract secret information from side channels

• Fault analysis attacks introduce computational errors to expose secret information 

Physical attacks
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Remaining challenges

• The delay of the authentication protocol needs to be compliant to
NFC standards

• Mutual authentication causes an even longer delay

• Public-key cryptography requires even more transistors
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