MIC-SEC-2022

Philippe TANGUY

Dec 07, 2022

CONTENTS:

Introduction 3
Quick start guide 5
2.1 PrerequiSites e e e e e e e e e e e e e e 5
2.2 Withthe Virtualbox VM L o e e e e e 5
2.3 Withthe Vagrantbox e 6
24 Fromtherepository and Vagrant Lo e e e 7
Virtual environnement 9
3.1 Prerequisites e 9
3.2 How to build the development environment L. 9
3.3 Make environment artifacts Lo e e 11
Labs 13
4.1 Lab 01: Getting Started with LiteX 13
4.2 Lab 02: Create a minimal SoC with LiTeX 17
4.3 Lab 03: Software app fora SoC withLiTeX 19
Conclusion 21
5.1 Related work e e e 21
52 CreditS oo e e e 21
5.3 Acknowledgements Ll e e e e e 21
Indices and tables 23

MIC-SEC-2022

The evaluation of security countermeasures is essential. Experimentation on real use cases and reproducibility are also
important. In the field of embedded systems security we often face a technological barrier and we have to master a
multitude of software and hardware tools. Moreover, our contributions often target a specific point and therefore we
are not necessarily experts of all the components of a system on chip (SoC). The technical task then usually takes a lot
of time when creating an experimental test bench. We propose in this practical work to discover some tools allowing
to deploy a SoC (with associated software) and to evaluate it on FPGA board.

Note: This hands-on session will try to answer the following question: How to quickly deploy a SoC on FPGA to
evaluate security solutions?

Warning: Hands-on materials are available in the Quick start guide chapter. To track updates you can also clone
the Git repository https://git.renater.fr/anonscm/git/mic-sec-2022/mic-sec-2022.git.

CONTENTS: 1

https://git.renater.fr/anonscm/git/mic-sec-2022/mic-sec-2022.git

MIC-SEC-2022

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

Title: How to quickly deploy a SoC on FPGA to evaluate security solutions for communicating embedded systems.

Abstract: The evaluation of security countermeasures is essential. Experimentation on real use cases and reproducibil-
ity are also important. In the field of embedded systems security we often face a technological barrier and we have to
master a multitude of software and hardware tools. Moreover, our contributions often target a specific point and there-
fore we are not necessarily experts of all the components of a system on chip (SoC). The technical task then usually
takes a lot of time when creating an experimental test bench. We propose in this practical work to discover some tools
allowing to deploy a SoC (with associated software) and to evaluate it on a FPGA board.

MIC-SEC-2022

4 Chapter 1. Introduction

CHAPTER
TWO

QUICK START GUIDE

This chapter explains how to launch the virtual environmment. If you want to start to build your environment from
scratch you can read the Virtual environment chapter.

2.1 Prerequisites

We prepared a virtual environnement for the hands-on session. So if you want to use it in order to not build your
environment from scratch you need the following software (Tested on Debian stable but it should work on other OS):

* Virtualbox
We also provide a Vagrant box so if you want to use our Vagrant box you need:
e Vagrant

¢ Virtualbox

2.2 With the Virtualbox VM

Warning: The virtual machine is available online!

Download it (size 2.5 Go) by following this link: https://filesender.renater.fr/?s=download&token=
3919a08f-8fb1-42b6-b349-d4e493a41c36

You can check that the download was ok:

$ sha256sum --check mic-sec-2022-litex.ova.sha256sum

Then you need Virtualbox

$ vboxmanage -v
6.1.32_Debianr149290

To get started, you can start Virtualbox and add the virtual machine.

$ vboxmanage import mic-sec-2022-litex.ova

Then start the virtual machine in Virtualbox. To access the VM you can use the Virtualbox GUI:

* login: vagrant

https://filesender.renater.fr/?s=download&token=39f9a08f-8fb1-42b6-b349-d4e493a41c36
https://filesender.renater.fr/?s=download&token=39f9a08f-8fb1-42b6-b349-d4e493a41c36

MIC-SEC-2022

* pwd: vagrant

In the virtual environment if you want to change the key map:

$ sudo loadkeys fr

If you want to access the network you should do in the VBOX GUI for your VM

$ sudo ip link set enp®s3
$ sudo dhclient enp®s3

If you want to access the network from the VM with SSH you have to allows ssh with password first. So in the VBOX
GUI edit the sshd_config file and allows the password authentication with PasswordAuthentication yes

$ sudo vim /etc/ssh/sshd_config
$ sudo systemctl restart sshd.service

Finally from your machine try to connect to the VM with SSH:

$ ssh -p 2200 vagrant@localhost

2.3 With the Vagrant box

Warning: The Vagrant box will be available online soon!

Download it (size 2.5 Go) by following this link: https:/filesender.renater.fr/?s=download&token=
39f9a08f-8fb1-42b6-b349-d4e493a41c36

You can check that the download was ok:

$ sha256sum --check mic-sec-2022-litex.ova.sha256sum

Then you need Vagrant

$ vagrant -v

Vagrant 2.2.14

$ vboxmanage -v
6.1.32_Debianr149290

With a terminal move to the directory

$ vagrant init mic-sec-2022 file://path/to/the/file
$ Vagrant up
$ Vagrant ssh

6 Chapter 2. Quick start guide

https://filesender.renater.fr/?s=download&token=39f9a08f-8fb1-42b6-b349-d4e493a41c36
https://filesender.renater.fr/?s=download&token=39f9a08f-8fb1-42b6-b349-d4e493a41c36

MIC-SEC-2022

2.4 From the repository and Vagrant

Warning: This section is for advanced user! It is not needed for the hands-on session if you already have the
Vagrant box file or The Vbox VM file.

Clone the Git repository

$ git clone https://git.renater.fr/anonscm/git/mic-sec-2022/mic-sec-2022.git
$ cd mic-sec-2022

$ git submodule init

$ git submodule update

Launch the Virtual machine

$ cd venv/vagrant-venv
$ vagrant up
$ vagrant ssh

To finalize the installation please look at the Virtual environment chapter.

2.4. From the repository and Vagrant 7

MIC-SEC-2022

8 Chapter 2. Quick start guide

CHAPTER
THREE

VIRTUAL ENVIRONNEMENT

Note: This chapter is not mandatory.

If you want to install directly all the tools on your system you can also follow the instructions of this chapter.

The repository contains a directory called venv with everything you need to set up a virtual machine for the labs.

3.1 Prerequisites

If you want to start to build your environment from scratch you need the following software (Tested on Debian stable
but it should work on other OS):

¢ Virtualbox

* Vagrant

3.2 How to build the development environment

Note: If you want to build your environnment by yourself followed the instruction below.

In the following we explain how the virtual environnement has been build.

3.2.1 Setup the virtual machine

$ vagrant -v

Vagrant 2.2.14

$ vboxmanage -v
6.1.32_Debianr149290

Start the virtual environment with Vagrant

$ vagrant init ubuntu/focal64
$ Vagrant up
$ Vagrant ssh

MIC-SEC-2022

3.2.2 LiteX

With Litex_setup.py

$ pyhton3 -m venv pyenv

$ source pyenv/bin/activate

$ cd hands-on/third_party

$ wget https://raw.githubusercontent.com/enjoy-digital/litex/master/litex_setup.py
$ chmod +x litex_setup.py

$./litex_setup.py --tag=2022.04 --init --install --config=full

$ cd litex

$ pip3 install meson ninja

$ wget https://static.dev.sifive.com/dev-tools/riscv64-unknown-elf-gcc-8.3.0-2019.08.0-
—x86_64-1linux-ubuntul4.tar.gz

$ gunzip riscv64-unknown-elf-gcc-8.3.0-2019.08.0-x86_64-1linux-ubuntul4.tar.gz

$ tar xvf ...

$ add to path

$ sudo apt install libevent-dev libjson-c-dev verilator

Without Litex_setup.py

In the following we will install LiteX without using litex_setup.py. Indeed it is usefull in a project to add all the
dependencies as Git submodule. So in your Git repository you can add LiteX and some usefull elements such as in our
case:

cd hands-on/third_party

git submodule add https://github.com/m-labs/migen.git

git submodule add https://github.com/enjoy-digital/litex.git

cd litex

git checkout 2022.08

git submodule add https://github.com/litex-hub/litex-boards.git

git submodule add https://github.com/enjoy-digital/litedram.git

git submodule add https://github.com/enjoy-digital/liteeth.git

git submodule add https://github.com/enjoy-digital/litescope.git

git submodule add https://github.com/enjoy-digital/liteiclink.git

git submodule add https://github.com/litex-hub/pythondata-cpu-vexriscv.git

git submodule add https://github.com/litex-hub/pythondata-cpu-cv32e4lp.git

git submodule add https://github.com/litex-hub/pythondata-software-picolibc.git
cd pythondata-software-picolibc

git submodule init

git submodule update

cd ..

git submodule add https://github.com/litex-hub/pythondata-software-compiler_rt.git
git submodule add https://github.com/litex-hub/pythondata-misc-tapcfg.git

LR L L - R R R L L L

Setup env in Python virtual environnemnt and install dependancies:

$ python3 -m venv venv/pyenv-litex

$ source venv/pyenv-litex/bin/activate

$ pip3 install -r hands-on/requirements.txt
$ deactivate

10 Chapter 3. Virtual environnement

MIC-SEC-2022

LiteX depends on other software for simulation and/or FPGA deployment. The following sections detail some of these
dependencies.

3.2.3 Verilator

Only needed for simulation

$ sudo apt install libevent-dev libjson-c-dev
$ sudo apt get install verilator

3.2.4 OpenOCD

Only needed to load the bitstream to the FPGA.

$ sudo apt-get install openocd

3.2.5 Riscv toolchain

$ wget https://static.dev.sifive.com/dev-tools/riscv64-unknown-elf-gcc-8.3.0-2019.08.0-
—x86_64-1linux-ubuntul4.tar.gz

$ gunzip riscv64-unknown-elf-gcc-8.3.0-2019.08.0-x86_64-1linux-ubuntul4.tar.gz

$ tar xvf ...

$ add to path

3.2.6 Vivado v2019.1

The installation of Vivado is not detailed here. If you want to generate your own Bitstream you will have to install
Vivado.

3.3 Make environment artifacts

Create a Vagrant box:

$ vagrant package --output=mic-sec-2022-litex.box
$ sha256sum mic-sec-2022-1itex.box.tar.xz | tee mic-sec-2022-1litex.box.tar.sha256sum
$ sha256sum --check mic-sec-2022-litex.box.sha256sum

Create a virtual machine:

$ vboxmanage export mic-sec-2022 -o mic-sec-2022-litex.ova
$ sha256sum mic-sec-2022-litex.ova | tee mic-sec-2022-1litex.ova.sha256sum

3.3. Make environment artifacts 11

MIC-SEC-2022

12 Chapter 3. Virtual environnement

CHAPTER
FOUR

LABS

Warning: The practical work has been tested on:
e Ubuntu 20.04.4 LTS.
¢ Debian Bullseye.

It should work on other OS.

4.1 Lab 01: Getting Started with LiteX

Objectives
1. Build a minimal System on Chip (SoC) with LiteX

2. Discover how LiteX work

4.1.1 Prerequisites

Firstly we will configure the environnement for the lab.

LiteX installation and setup has been done in a Python virtual environment, so activate it:

source venv/pyenv-litex/bin/activate

To generate the software you need a software toolchain. For LiteX to use the toolchain you have to configure it:

export PATH="INSTALL-PATH/riscv64-unknown-elf-gcc-8.3.0-2019.08.0-x86_64-1linux-ubuntul4/
—bin: $PATH"

To generate the gateware you need a FPGA toolchain. For LiteX to use the toolchain you have to configure it:

export LITEX_ENV_VIVADO="INSTALL-PATH/Xilinx/Vivado/2019.1"

The FPGA board used in this lab is a Digilent Basys3 board:

13

MIC-SEC-2022

The FPGA is a Artix-7 FPGA.

All the materials for the lab are available in the following folder:

cd hands-on/1ab®1

4.1.2 Build your first SoC for Verilator

A makefile is available to help you execute the right commands. To look at behind the scene what happened look at

inside the Makefile.

To generate the verilated model of the SoC try:

make soc_sim_gateware

To generate the software, here the demo example provided by LiteX, try:

make soc_sim_demo

Finally to test your SoC with the associated software you can try:

make soc_sim_demo_run

And you should have something like this:

RS YRV,
J)] > <
/e NN/]]_]

Build your hardware, easily!

(c) Copyright 2012-2022 Enjoy-Digital
(c) Copyright 2007-2015 M-Labs

BIOS built on Dec 5 2022 23:35:03
BIOS CRC passed (7c5b41e8)

(continues on next page)

14

Chapter 4. Labs

MIC-SEC-2022

(continued from previous page)

LiteX git shal: a4cc859d

-- SoC --
CPU: VexRiscv @ 1MHz

BUS: WISHBONE 32-bit @ 4GiB
CSR: 32-bit data

ROM: 128KiB

SRAM: 8KiB

MAIN-RAM: 64KiB

——=—==———=—=—== Inltiallzatlon ———————————— -
-- Boot --

Booting from serial...

Press Q or ESC to abort boot completely.
sL5DdSMmkekro

Timeout

Executing booted program at 0x40000000

——===—===—=—=—=== Liftoff‘ I

LiteX minimal demo app built Dec 5 2022 23:34:50

Available commands:

help - Show this command
reboot - Reboot CPU

donut - Spinning Donut demo
helloc - Hello C

litex-demo-app> helloc
Hello C demo...
C: Hello, world!
litex-demo-app>

4.1.3 Build your first SoC for FPGA

If you do not have Vivado installed in your system we already a bitstream for you. It is available in the demo-digilent-
basys folder inside the virtual machine. If you have Vivado installed in your system you can try:

make soc_basys3_gateware

You can generate the doc of the SoC

make soc_basys3_doc

And then open it

open build/digilent_basys3/doc/_build/html/index.html

You can load the generated bitstream to the board

make soc_basys3_load_bitstream

4.1. Lab 01: Getting Started with LiteX 15

MIC-SEC-2022

Connect a serial terminal to the board

litex_term /dev/ttyUSB1

Then press the BTNC button to reset the board. You should have something like this

RS YR,
J)] > <
/e NN/ _]

Build your hardware, easily!

(c) Copyright 2012-2022 Enjoy-Digital
(c) Copyright 2007-2015 M-Labs

BIOS built on Dec 5 2022 22:46:08
BIOS CRC passed (729066ee)

LiteX git shal: a4cc859d

-- SoC -
CPU: VexRiscv @ 75MHz

BUS: WISHBONE 32-bit @ 4GiB
CSR: 32-bit data

ROM: 128KiB

SRAM: 8KiB

MAIN-RAM: 128KiB

--========== Initialization ============--

Memtest at 0x40000000 (128.0KiB)...
lirite: 0x40000000-0x40020000 128.0KiB
Read: 0x40000000-0x40020000 128.0KiB
Memtest OK
Memspeed at 0x40000000 (Sequential, 128.0KiB)...
Write speed: 123.9MiB/s
Read speed: 63.9MiB/s

- Boot --
Booting from serial...

Press Q or ESC to abort boot completely.
sL5DdSMmkekro

Timeout

No boot medium found

litex>

16

Chapter 4. Labs

MIC-SEC-2022

4.1.4 Load an application from the LiteX BIOS

Generate the demo example for the gateware

make soc_basys3_demo

Load the application over the serial bus

make soc_basys3_load_demo

Then press the BTNC button to reset the board and observe.

4.1.5 Take aways

¢ A SoC functional in few minutes!

* A lots of supported boards!

» Several FPGA toolchains supported!

* Open source community https://github.com/enjoy-digital/litex

* High level description of your Gateware.

4.2 Lab 02: Create a minimal SoC with LiTeX

Objectives
1. Create a minimal SoC from scratch

2. See how to instantiate different CPU cores

4.2.1 Prerequisites

Firstly we will configure the environnement for the lab.

LiteX installation and setup has been done in a Python virtual environment, so activate it:

source venv/pyenv-litex/bin/activate

To generate the software you need a software toolchain. For LiteX to use the toolchain you have to configure it:

export PATH="INSTALL-PATH/riscv64-unknown-elf-gcc-8.3.0-2019.08.0-x86_64-1linux-ubuntul4/
—bin: $PATH"

All the materials for the lab are available in the following folder:

cd hands-on/1lab0®2

4.2. Lab 02: Create a minimal SoC with LiTeX 17

https://github.com/enjoy-digital/litex

MIC-SEC-2022

4.2.2 Discover a minimal SoC for simulation

The folder contains a file called lab02-litex-sim.py. It describes a minimal SoC which target a simulation platform.

You can test it by doing

make soc_sim_gateware
make soc_sim_demo
make soc_sim_demo_run

4.2.3 Build a SoC and change the CPU

Change the CPU used by using a picorv32. To use this cpu you need to install the pythondata-cpu-picorv32 if not
available in the third_party folder. To do that observe the Makefile and change the cpu-type option.

At the end of the process you should have something like that

RS YR,
J)]] - <
/o NN]]_]

Build your hardware, easily!

(c) Copyright 2012-2022 Enjoy-Digital
(c) Copyright 2007-2015 M-Labs

BIOS built on Dec 6 2022 01:26:43
BIOS CRC passed (99b0f0ac)

LiteX git shal: a4cc859d

-- SoC --
CPU: PicoRV32 @ 1MHz

BUS: WISHBONE 32-bit @ 4GiB
CSR: 32-bit data

ROM: 128KiB

SRAM: 8KiB

MAIN-RAM: 64KiB

——————=—————= Initialization ——————————m—— - -
-= Boot -=

Booting from serial...

You can observe that the CPU has changed.

18

Chapter 4. Labs

MIC-SEC-2022

4.2.4 Take aways

* Python as hardware description language allows to quickly add new features to your SoC: add new IP core, etc.

A lot a different configuration specially to test easily different CPU

* Interesting illustration of what can be done with the LiteX embench tester:
— https://antmicro.github.io/embench-tester/

— https://github.com/antmicro/embench-tester

¢ For a same CPU type you can define CPU variants

4.3 Lab 03: Software app for a SoC with LiTeX

Objectives
1. Develop a software baremetal app

2. Deploy and test your software in a simulation environment

4.3.1 Prerequisites

Firstly we will configure the environnement for the lab.

LiteX installation and setup has been done in a Python virtual environment, so activate it:

source venv/pyenv-litex/bin/activate

To generate the software you need a software toolchain. For LiteX to use the toolchain you have to configure it:

export PATH="INSTALL-PATH/riscv64-unknown-elf-gcc-8.3.0-2019.08.0-x86_64-1inux-ubuntul4/
—bin: $PATH"

All the materials for the lab are available in the following folder:

cd hands-on/1ab®3

4.3.2 Baremetal app

To create a baremetal app a good starting point is to use the demo app provided in LiteX.

cp -r ../third_party/litex/litex/soc/software/demo myapp

Look at the main.c file and try to add your own function in the menu that will display “Awesome Winter School 2022!”.

Finally test your programm in Verilator:

make soc_sim_gateware
make soc_sim_myapp
make soc_sim_myapp_run

4.3. Lab 03: Software app for a SoC with LiTeX 19

https://antmicro.github.io/embench-tester/
https://github.com/antmicro/embench-tester

MIC-SEC-2022

4.3.3 Take aways

There is existing project with Linux and RTOS (Zephyr, Tock OS):

* https://github.com/litex-hub/linux-on-litex-vexriscv
* https://github.com/litex-hub/linux-on-litex-rocket
* https://github.com/litex-hub/zephyr-on-litex-vexriscv

* https://docs.tockos.org/litex/index.html

20

Chapter 4. Labs

https://github.com/litex-hub/linux-on-litex-vexriscv
https://github.com/litex-hub/linux-on-litex-rocket
https://github.com/litex-hub/zephyr-on-litex-vexriscv
https://docs.tockos.org/litex/index.html

CHAPTER
FIVE

CONCLUSION

Note: We hope this hands-on session will allow you to automate your experimental test bench to evaluate your solutions
and make your work reproducible.

5.1 Related work

In the hardware security community other researchers are using this kind of workflow proposed in this hands-on session.
Please find below a list of related works using LiTeX, it will help you to get inspired if you want to use this kind of
tools in your work:

* Tool: rowhammer-tester
— https://rowhammer-tester.readthedocs.io/en/latest/
— https://github.com/antmicro/rowhammer-tester

* Tock OS ported to LiteX SoC Arty

— https://github.com/tock/tock/releases

5.2 Credits

LiteX github

5.3 Acknowledgements

* Open source community for the development of the following nice tools: LiteX, Migen, nMigen, Verilator, RiscV,
OpenOCD, ...

21

https://rowhammer-tester.readthedocs.io/en/latest/
https://github.com/antmicro/rowhammer-tester
https://github.com/tock/tock/releases

MIC-SEC-2022

22

Chapter 5. Conclusion

CHAPTER
SIX

INDICES AND TABLES

* genindex
* modindex

¢ search

23

	Introduction
	Quick start guide
	Prerequisites
	With the Virtualbox VM
	With the Vagrant box
	From the repository and Vagrant

	Virtual environnement
	Prerequisites
	How to build the development environment
	Setup the virtual machine
	LiteX
	With Litex_setup.py
	Without Litex_setup.py

	Verilator
	OpenOCD
	Riscv toolchain
	Vivado v2019.1

	Make environment artifacts

	Labs
	Lab 01: Getting Started with LiteX
	Prerequisites
	Build your first SoC for Verilator
	Build your first SoC for FPGA
	Load an application from the LiteX BIOS
	Take aways

	Lab 02: Create a minimal SoC with LiTeX
	Prerequisites
	Discover a minimal SoC for simulation
	Build a SoC and change the CPU
	Take aways

	Lab 03: Software app for a SoC with LiTeX
	Prerequisites
	Baremetal app
	Take aways

	Conclusion
	Related work
	Credits
	Acknowledgements

	Indices and tables

