How to quickly deploy a SoC on FPGA to evaluate security solutions for communicating embedded systems?

International Winter School on Microarchitectural Security 2022

Philippe TANGUY December 06, 2022

Lab-STICC

Objectives:

Explained our needs and requirements related to our research topic

Objectives:

- Explained our needs and requirements related to our research topic
- ► Present a tool to generate a System-On-Chip quickly for FPGA : RFTX about LiteX

Objectives:

- ► Explained our needs and requirements related to our research topic
- ► Present a tool to generate a System-On-Chip quickly for FPGA : RFTX about LiteX
- ► Introduce our hands-on: introducte LiTeX and how it could be usefull for security evaluation of embedded system software/hardware counter measures.

Problems Statements and Requirements

► An embedded systems involves skills at the hadware level and software level

- ► An embedded systems involves skills at the hadware level and software level
- ▶ Developping for an embedded system needs to manage several tools: toolchain, several language, scripting, debug tools, JTAG, ...

- ► An embedded systems involves skills at the hadware level and software level
- ▶ Developping for an embedded system needs to manage several tools: toolchain, several language, scripting, debug tools, JTAG, ...
- ► How to go from idea to proof-of-concept quickly : for demonstration, etc.

- ► An embedded systems involves skills at the hadware level and software level
- ► Developping for an embedded system needs to manage several tools: toolchain, several language, scripting, debug tools, JTAG, ...
- ► How to go from idea to proof-of-concept quickly : for demonstration, etc.
- ► A PhD thesis is only 3 years (in France)

- ► An embedded systems involves skills at the hadware level and software level
- ► Developping for an embedded system needs to manage several tools: toolchain, several language, scripting, debug tools, JTAG, ...
- How to go from idea to proof-of-concept quickly: for demonstration, etc.
- ► A PhD thesis is only 3 years (in France)
- ► How to manage research artifacts certified as reproducible

Specific Problems Statements

► At the hardware level a System On Chip can be complex and at some point we contribute to a specific part of the overall system

Specific Problems Statements

- ► At the hardware level a System On Chip can be complex and at some point we contribute to a specific part of the overall system
- ► Hardware description language

► Open source tools as much as possible

- ► Open source tools as much as possible
- ► Benefits of community

- ► Open source tools as much as possible
- ► Benefits of community
- ► Do not reinvent the wheel

- ► Open source tools as much as possible
- ► Benefits of community
- ► Do not reinvent the wheel
- ► Build automation

- ► Open source tools as much as possible
- ► Benefits of community
- ► Do not reinvent the wheel
- ► Build automation
- ► Support several FPGA, devkit boards, ...

- ► Open source tools as much as possible
- ► Benefits of community
- ► Do not reinvent the wheel
- ► Build automation
- ► Support several FPGA, devkit boards, ...
- Make comparison of several implementation without developping everything from scratch

- ► Open source tools as much as possible
- ► Benefits of community
- ► Do not reinvent the wheel
- ► Build automation
- ► Support several FPGA, devkit boards, ...
- ► Make comparison of several implementation without developping everything from scratch
- ► Have examples or support about deploying RTOS OS and/or Linux

- ► Open source tools as much as possible
- ► Benefits of community
- ► Do not reinvent the wheel
- ► Build automation
- ► Support several FPGA, devkit boards, ...
- ► Make comparison of several implementation without developping everything from scratch
- ► Have examples or support about deploying RTOS OS and/or Linux

Which tool to use?

We choose to use LiteX!

Quick demo!

FPGA 101 (in 5min)

ASIC et programmable circuit

Terminology

- ► ASIC : Application-specific integrated circuit
- ► PLD : Programmable Logic Device

ASIC vs PLD

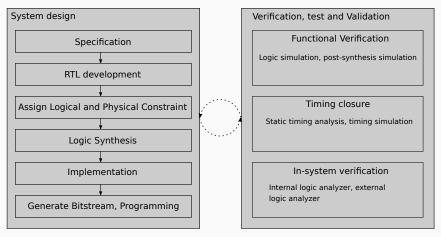
- ▶ VHDL (or Verilog, ...) allows to descibes hardware for ASIC or PLD
- ► ASIC are dedicted component
- ► PLD are programmable component

Au commencement ...

Microprocessor and FPGA are dedicated component.

- ► First microprocessor (1971)
- ► Allows to execute intruction and process program data

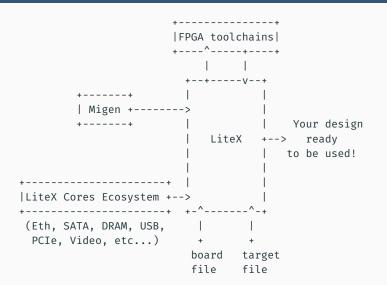
- First FPGA (field programmable gate array) (1985)
- Allows to define a circuit to realize a function (Xor, FFT, CPU


Niveau	Microprocessorr	FPGA
Transistor		
Logic	Arch. fixed	
Architecture	μp	
Algorithm		

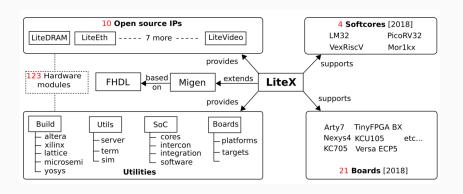
Niveau	Microprocessorr	FPGA
Transistor		
Logic	Arch. fixed	
Architecture	μρ	
Algorithm	Soft for CPU	

Niveau	Microprocessorr	FPGA
Transistor		Arch. fixed
Logic	Arch. fixed	
Architecture	μρ	
Algorithm	Soft for CPU	

Niveau	Microprocessorr	FPGA
Transistor		Arch. fixed
Logic	Arch. fixed	Netlist
Architecture	μρ	(HDL prog.)
Algorithm	Soft for CPU	Soft SoC


Overview

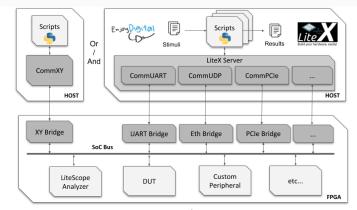
Example on the demo with Vivado!


LiteX 101

LiteX?

Img Credits : LiteX

LiteX and component?

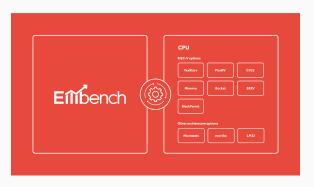

Img credits: https://pcotret.github.io/ENSTAB-RISCV/

LiteX Hub: LiteX-boards

Support a lot of FPGA chip, boards and dev kit!

```
(pyenv-litex)> ls litex-boards/litex boards/targets/
1
    zsh: do you wish to see all 132 possibilities (66 lines)?
2
    (pyenv-litex)> ls -l litex-boards/litex boards/targets/digilent *
3
    litex-boards/litex boards/targets/digilent arty.py
4
    litex-boards/litex boards/targets/digilent basys3.py
5
    litex-boards/litex boards/targets/digilent nexys4.py
6
    litex-boards/litex boards/targets/digilent arty s7.pv
    litex-boards/litex_boards/targets/digilent_cmod_a7.py
8
    litex-boards/litex boards/targets/digilent nexys video.py
9
    litex-boards/litex boards/targets/digilent arty z7.py
10
    litex-boards/litex_boards/targets/digilent_genesys2.py
11
    litex-boards/litex_boards/targets/digilent_pynq_z1.py
12
    litex-boards/litex boards/targets/digilent atlys.py
13
    litex-boards/litex boards/targets/digilent nexys4ddr.py
14
    litex-boards/litex_boards/targets/digilent_zedboard.py
15
```

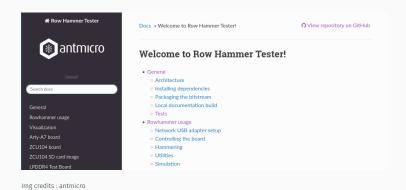
LiteX debug infrastructure



LiteX Remote Control/Debug Infrastructure

Img credits : LiTeX Github

Interesting project/paper using LiteX i


► LiteX embench tester https://github.com/antmicro/embench-tester

Img credits: antmicro

Interesting project/paper using LiteX ii

► LiteX rowhammer tester https://github.com/antmicro/rowhammer-tester

14/16

Conclusion

Conclusion about LiteX

- ► Usefull for constraint embedded system : simple SoC, simple Core, ...
- ▶ It is not an industrial framework but it works ...

Hands-on overview

- ► Labs available online https://sourcesup.renater.fr/www/mic-sec-2022/
- ▶ 3 labs:
 - ► Lab 01 : Getting Started with LiteX
 - ► Lab 02 : Create a minimal SoC with LiTeX
 - ► Lab 03 : Software app for a SoC with LiTeX

Questions/Discussions?

(Hands-on after the break!)

Acknowledgements

- ► LiteX community
- ► Thesis Mohamed El-bouazzati