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Introduction: IoT devices (1/2)

• Number of Internet of Things (IoT) devices expanding exponentially
(+10 Billions, in 2021; [Jovanović and Vojinovic, 2021])

• A wide range of applications and use-cases
(ex: healthcare, industry and agriculture)

• Multiple constraints on resources are related to IoT devices
(energy, communication range, data rate, flexibility, life-cycle,. . . )
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Introduction: IoT devices (2/2)

Figure: Global number of connected IoT devices [IoT, 2020]
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Introduction: Wireless Connectivity in IoT (1/2)

• Explosion of number of IoT device connections
(+20 Billions in 2019) [IoT, 2020])

• Emergence of a large number of IoT standards and protocols

• Development of Low Data Rate and Low Power protocols to match the
challenges of the IoT environment (LoRa, BLuetooth/BLE, NB-IoT, Zigbee,
SigFox, . . . )
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Introduction: Wireless Connectivity in IoT (2/2)

Figure: Total number of device connections (incl. Non-IoT) [IoT, 2020]
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Motivation and Identified challenges

• Several challenges resulting from the evolution of IoT infrastructures
(number of devices, waveforms and communication protocols).

• Appearance of attacks and vulnerabilities affecting the IoT devices (1.5
Billion attacks in 2021 [Price, 2021] )

• Network systems are considered to be one of the most important
potential entry points for attacks. DoS, DDoS, Jamming, MITM, . . .

• Physical layers are implemented with a dedicated hardware architecture

• New approaches to implement the physical layer using Software Defined
Radio (SDR) architecture are proposed to reach flexibility and
multi-protocol operations.

• The implementation of wireless connectivity using (SDR) could expand
the attack surface for traditional security exploits (ROP, Overflow, . . . ).

• Various requirements and challenges have to be considered in the
design of IoT devices: Security, Flexibility and Power Consumption
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wrap-up

Security of embedded systems?

• Physical Access
• Cryptography Implementation
• . . .
• Network Entry Point

Sub-1GHz

Sub-1GHz

2.4 GHz

2.4 GHz

Gateway

IP_camera

Smart watch

IoT node 1

IoT node 2

Cloud

Figure: IoT architecture
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Objectives

• Focus on wireless connectivity of resource-constraints IoT devices

• Development of secure, flexible processor for wireless connectivity

• Target Low data rate and low power protocols and waveforms
BLE, LoRa/LoRaWAN, Zigbee and 6LoWPAN

• Achieve the integrity of IoT devices and network availability

• Focus on RISC-V open source ISA for BaseBand/Network CPU
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SoC for IoT overview

• Main CPU for application user

• Peripherals and connectivity

• Integration of protection mechanisms

• Isolation between Radio and user
application

System On Chip for IoT

Application Processor

Main CPU

JTAG

ROM

RAM

Figure: SoC IoT overview

Don’t forget that SoC are integrating a wireless connectivity unit!
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Baseband architecture: Dedicated Hardware

• ESP32-C3 from Espressif

• Dedicated hardware (Baseband
part) for each waveform /
Protocol

• Lack of flexibility

Figure: Wireless Connectivity of ESP32-C3
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Baseband architecture: CPU + DSP

• Generic CPU based architecture
(Without ISA extension)

• Integration of a DSP for the radio
part

Figure: wireless connectivity of CC1352R
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Baseband Architecture: Hybrid FPGA

• Hybrid FPGA (Zynq) or FPGA + MCU

Figure: SoC TinySDR [Hessar et al., 2020]
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Baseband Architecture: CPU with SIMD

• CPU Dedicated architecture

Figure: SMID based CPU Dedicated Architecture
[Chen et al., 2016]
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Baseband Architecture: Generic CPU

• CPU with ISA extension (ARM, RISC-V)

Figure: Architecture ARM
[Xhonneux et al., 2021]

Figure: Architecture RISC-V
[Amor et al., 2019, Belhadj Amor et al., 2021]
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Examples of SoC in industry

• Texas instruments

• ST Microelectronics

• NXP

• Espressif

• . . .

Figure: CC1352R SoC Texas instruments

Several SoCs in industry include a core dedicated to wireless connectivity
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Challenges and identified marks

• A software-defined baseband radio processor using a generic CPU
architecture with an instruction set extension is more interesting.

• The constraints of limited resources and consumption of connected
objects must be taken into account.

• Other challenges associated with the software radio must also be taken
into account: security, programmability

Baseband Dedicated Hardware Hybrid FPGA CPU (dedicated) CPU (Generic)
Multi-Protocol ✗ ✓ ✓ ✓

Programmability ✗ + + +++
Security Mechanism ✗ ✗ ✗ ✗

Flexibility ✗ +++ + ++
Dynamic power ∼ 100mW ∼ 100mW ∼ 10mW ∼ 10µW

Table: A comparison of IoT SDR baseband processor architectures and their features
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Threat Model

SoC: IoT end-point 

Application

Firmware

Main CPU

USER

Wireless Connectivity 

Front end

Upper Layers

MAC MAC

PHYPHY

Network
Processor

Stack Sub-GHz / GHz

IoT Gateway

Figure: Potential Threat Model

Target : Remote Attacks

• Jamming Attack

• Logical Attacks: Packet Injection, . . .
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Vulnerabilities in IoT

Vulnerability AMNESIA33 BLEEDINGBIT LoRaDawn
Number of CVEs 33 [Labs, 2020] 2 [Seri, Benn (ARMIS et al., 2019] 2 [ten, 2020]

Where ? Poor Software Development Masking Error, OAD OTAA Process, 32bit Gateway
Target Device uIP, FNET, picoTCP, NuTNet AP with TI BLE LoRaMac-node, LoRa Basics Station
Stack Layer Physical /MAC MAC MAC

Stack / protocol TCP/IP / IEEE 802.15.4 BLE LoRaWAN
Exploit RCE, DoS, Steal Data Packet injection, RCE DoS, RCE, Heap UAF

Table: A set of three Groups of vulnerabilities in IoT and their features

SoC: IoT end-point 

Application

Firmware

Main CPU

USER

Wireless Connectivity 

Front end

Upper Layers

MAC MAC

PHYPHY

Network
Processor

Stack Sub-GHz / GHz

Figure: SoC for IoT with wireless connectivity
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Example of Exploit : InjectBLE [Cayre et al., 2021]

• Vulnerabilities: Long synchronization time between Slave and Master
BLE in connection step

• Exploit: Packet injection (Hijacking slave and master, MITM)
• InjectBLE Firmware
• Mirage framework
• Used BLE module: nRF52840-dongle

Figure: nRF52840-dongle : https://www.nordicsemi.com/

© Mohamed EL-BOUAZZATI, Philippe TANGUY, Guy GOGNIAT 19

https://www.nordicsemi.com/


Example of Exploit : Main in the middle (MITM) attack

We reproduce the MITM attack using two modules from mirage framework in
order to sniff packets between master and slave: (ble_hijack and ble_master)

• ble_master: Mobile App

• ble_slave: Led strip

• Attacker: Laptop with
nRF52840-dongle

Figure: Sniffing packet exploit
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Example of Exploit: Packet Injection

After hijacking the BLE Master we perform a packet injection exploit

Figure: Packet Injection exploit
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Attacks in IoT

SoC: IoT end-point 

Application
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Figure: SoC for IoT

IoT Protocol Stack

Upper Layers

MAC Layer

Physical Layer

Figure: IoT protocol stack layers

E (Exploited Layer) T (Targeted Layer)

Ref Protocol Attack PHY MAC Upper Exploit
[Cayre et al., ] Zigbee Wazabee E E/T T DoS, packet injection
[Aras et al., ] LoRaWAN Selective Jamming E E/T T DoS, Wormhole

[Hessel et al., ] LoRaWAN Spoofing E E/T - DoS
[Avoine and Ferreira, 2018] LoRaWAN - T T replay, decrypt, DoS

[Cayre et al., 2021] BLE InjectBLE E E/T T MITM, Sniffing
[Zhang et al., 2020] BLE Downgrade - - T DoS, MITM
[Santos et al., 2019] BLE Injection-free - - E/T DoS, MITM

[Antonioli et al., 2020] BT/BLE Key.nego downgrade - E/T E/T Decypt packet, MITM

Table: Security SoA IoT Low Data rates protocols (Sub-GHz, Zigbee, BLE)
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Security mechanisms & mitigation

Features CC1356 CC1352R1 STM32WL54CC
Sec. Boot (protection) ✓ ✓ ✓

Cryptography (protection) ✓ ✓ ✓
OTA (Update) ✓ ✓ ✓

Heap ASLR (protection) ✗ ✗ ✗
Monitoring (detection) ✗ ✗ ✗
DIFT (hard. monitor) ✗ ✗ ✗

Code instrumentation (protection) ✗ ✗ ✗
Anomaly/Intrusion detection ✗ ✗ ✗

Table: Platform security features comparison

Security Mechanisms

• Confidentiality, Integrity and availability
• Protection mechanisms
• Update & Over the air Mechanisms
• Monitoring & Detection Mechanisms

Figure: CC1352R1 : SoC for IoT

© Mohamed EL-BOUAZZATI, Philippe TANGUY, Guy GOGNIAT 23



Motivation and contribution

Motivation

• Remote attacks detection on wireless connectivity of IoT SoC

• The necessity of a monitoring detection mechanism that captures system
behavior and identifies attacks.

Contribution: Intrusion Detection System (IDS)

• Acquisition, Analyze and Identification, warn or block attacks
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IDS taxonomy
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Figure: IDS taxonomy for IoT environment
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Host based IDS in state of the art

What are the accurate metrics to be recorded for an HIDS?

Ref PHY MAC UL µProc RT Target PS DM Place

[Yan et al., 2020] RSSI - - - - Spoof Model legiti.RSSI B G / RC
[Zhang et al., 2013] RSSI TS TS - - integrity SDR B D
[Sousa et al., 2017] - P - - - DoS Analyze & store S RC
[Kasinathan et al., 2013] - P - - - DoS, Jamm SURICATA S D
[Eskandari et al., 2020] Trafic P - - - P.inject GUI LINUX S G
[Raza et al., 2013] - P - - - Rout, Snik IDS + min.FW B+S H

[Saeed et al., 2016] - - Sensor IMA - P.inject, DoS C.Instru + ML B G
[Gassais et al., 2020] - - - CTF - DD/DoS Tracing + ML S H
[Bourdon et al., 2021] - - - HPC - P.inject Tracing + ML B H

[Breitenbacher et al., 2019] - - N/A - SC 0-day, DoS LKM + Whitelist B RC

Table: Host based IDS for IoT

• MAC (Mac layer): TS (Time series), P (Packet Header)
• UP (Upper layers): TS (Time series)
• HW (Hardware/processor) : IMA (Illegal memory access), HPC (Hardware Performance counter)
• SW (Software/runtime): SC (Syscalls)
• Target attacks : Spoof (Spoofing), Jamm (Jamming), P.inject (Packet Injection), Rout (Rooting), Snik (Sinkhole)
• PS (Proposed Solution): LKM (Loadable kernel module), min.FW (mini firewall), ML (Machine Learning)
• DM (Detection Methodology): B (Behavior), S (signature)
• Place (Placement Strategy): RC (Resource constraint), G :(Gateway), D (Device), H (Hybrid)

The multi-level approach is not yet addressed in the state of the art
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Towards a multi-level metrics HIDS
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Objective

• Proposed Hardware:
• CV32E41P RISC-V Processor for handling the wireless connectivity

• Record Hardware Performance Counters (HPC) from CV32E41P by
HPMtracer (Hardware block)

• Scenario

• Reproduction of simple buffer overflow exploit on stack and heap on
software running on wireless connectivity part

• Build Dataset of HPC values per each packet network

Figure: CV32E41P/40P block diagram
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Upper Layers 

MAC Layer 

Physical Layer

Network Processor 

Tracer HPCs

HIDS
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Tracing 

Warning

Figure: Testbed block diagram
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Test-bed with tracing metrics from RISC-V CV32E41P
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Flow diagram

Received Packet

Enable Tracing 

Parsing Packet

HPCs Monitoring 

End of Parsing

Read HPCs Analyze & Detect Interrupt

 Software : MAC Layer 

Hardware : Tracer & Detector

Figure: Flow diagram of network packet processing, HPC monitoring and detection.
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Attacks Scenarios

Attack Scenarios Buffer Size
Packet Type Traffic Size Stack Heap
Legitimate 5− 10 bytes 10 bytes 10 bytes

S1: Stack Overflow 13− 23 bytes 10 bytes 23 bytes
S2: Heap Overflow 13− 23 bytes 23 bytes 10 bytes

Table: The physical buffer size is 10 or 23 bytes. Larger packets result in a buffer
overflow.
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List of monitored hardware events

Hardware Event Description Counter
CYCLES Number of cycles 0
INSTR Number of instructions retired 2

LD_STALL Number of load use hazards 3
JMP_STALL Number of jump register hazards 4

IMISS Cycles waiting for instruction fetches 5
LD Number of load instructions 6
ST Number of store instructions 7

JUMP Number of jumps (unconditional) 8
BRANCH Number of branches (conditional) 9

BRANCH_TAKEN Number of branches taken (conditional) 10
COMP_INSTR Number of compressed instructions retired 11

Table: List of hardware events monitored by the CV32E41P performance counters
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Shortlisted Hardware Performance Events
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Figure: Distribution of cumulative values of hardware events IMISS, Store and
JMP_STALL in attack scenarios
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Preliminary results

This histogram shows the evaluation results of the comparison of several
classification algorithms.
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Figure: Comparison of ML Classifiers Models

• Interesting Results
• An in-depth study to follow: Data-set, Scenarios, Detection, Cost?
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Generated decision tree classifier model

Yes NoIMISS  
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Figure: Generated decision tree classifier model

© Mohamed EL-BOUAZZATI, Philippe TANGUY, Guy GOGNIAT 35



FPGA Implementation Cost

HIDS elements Overhead Freq Average Total Power
HPM (nb) Tracer Detector LUT FF MHz mW

V1 ✓ (1) - - 4636 (+00%) 1237 (+00%) 65.86 (+00%) 91 (+00%)

V2 ✓ (2) - - 4802 (+3.58%) 1318 (+6.54%) 65.35 (−0.77%) 92 (+1.0%)
V3 ✓ (2) ✓ ✓ 4932 (+6.38%) 1318 (+6.54%) 65.47 (−0.59%) 98 (+7.6%)

Table: Implementation resource utilization and power consumption

Resource Utilization: Arty-A7 35T FPGA

• 6.4%/6.5% of LUTs/FFs Area overhead
• 7.61% Total Power(around 7mW)
• 0.6% No impact on the design’s performance (65MHz)
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Prototype with LoRaWAN

Hardware
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Figure: SoC architecture with
LoRaMACnode stack Figure: Arty-a7 100T FPGA with SX1276

based LoRa shield
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Conclusion

• Ongoing work
• New approach for monitoring and detecting remote attacks against IoT

devices

• Simulation Test-bed to detect buffer overflow using hardware counters.

• Promising results of machine learning classification algorithms.

• Prototype Testbed with LoRa & LoRaWAN Protocol

• Future work
• Include new features (SNR, RSSI, IAT,. . . ) + new attacks (Jamming, . . . )

• Tracer & IDS Security and Resources Evaluation (Detection, Benchmarks,
Overhead, Power consumption).
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Q & A
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