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Security is Adversarial

New detection systems trigger  
an immediate response…

…which causes dataset shifts, often violating 
the i.i.d. assumption
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Oh yeah, that’s malware alright

Security is Adversarial
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To understand and improve the effectiveness of machine learning 
methods for systems security in the presence of adversaries

Representation of problem space objects (e.g., programs) results in a semantic gap 

• It makes designing attacks and defenses more challenging  

• It leaves room for adversarial manipulation 

• It challenges the identification of causal vs non-causal (spurious) features

Effectiveness of ML for systems security is intertwined with the  

underlying abstractions, e.g., program analyses, to represent objects 

• This affects robustness to adversarial drift, explainability, costs, and performance

7



Outline



Outline

Adversarial ML evasion attacks against malware classifiers 
• Classic formulation of evasion attacks is ill-suited for reasoning about realizable evasive malware 

• By reformulating, we can propose stronger attacks and easily compare against alternatives 

• Practical end-to-end automatic adversarial malware as a service — how about defenses?
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FS attack
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≈ φ−1

The feature mapping  is differentiable 
— you can backpropagate to input

φ
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φ

??? In the software domain,  
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neither invertible nor differentiable 
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φ
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Running example: 
Code

Evasion Attacks
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Problem-Space Constraints
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How can you alter problem-space objects?Available Transformations

Addition Removal
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Problem-Space Constraints

23

Available Transformations
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Problem-Space Constraints

23

Which semantics do you preserve? How? 
Which automatic tests can verify it?

Preserved Semantics

Malicious Node

Available Transformations
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Problem-Space Constraints
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Which semantics do you preserve? How? 
Which automatic tests can verify it?

Test Suite 
• Does it crash? 
• Does it still communicate with CnC? 
• Does it still encrypt the /home/ folder?  

By Construction 
• Add no-op operations 
• Ensure it is not executed at runtime

Preserved Semantics

Malicious Node

Available Transformations
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Problem-Space Constraints
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Available Transformations
Preserved Semantics
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Problem-Space Constraints

24

Available Transformations
Preserved Semantics
Plausibility

Does it look legit?
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Problem-Space Constraints
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Available Transformations
Preserved Semantics
Plausibility

Test Suite 
• User studies 
• Automated heuristics  

By Construction 
• Taking precautions during mutation

Does it look legit?
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Problem-Space Constraints

25

Which preprocessing are you considering?

Available Transformations
Preserved Semantics
Plausibility
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Problem-Space Constraints

25

Which preprocessing are you considering?

Available Transformations
Preserved Semantics

Robustness to Preprocessing
Plausibility
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Preserved Semantics

Robustness to Preprocessing
Plausibility

ANALYSIS

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing



Side-effect Features

26
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Actionable Points

Verify existence of feature-space attack

27

Necessary Condition for problem-space attacks

∃ problem-space attack ⟹ ∃ feature-space attack Proof 1 
in paper
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Our Android Attack

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing



32

Our Android Attack

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing



33

Our Android Attack
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Available Transformations 
Code addition through automated software transplantation.

Our Android Attack
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Preserved Semantics 
Malicious semantics preserved by construction using 
opaque predicates (inserted code is not executed at 
runtime).

Plausibility 
Only realistic code is injected (rather than orphaned urls, api calls, etc.) 
Mutated apps install and start on an emulator.
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Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing



35

</>

DEX

Identify feature entry point1 Identify activity in dex

Organ Harvesting
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</>

DEX

Choose any vein (backward slice)2
Extract intent creation 
and startActivity()

Organ Harvesting
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</>

DEX

Collect organ (forward slice)3 Gather activity definition

Organ Harvesting
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Include transitive dependencies4
Recursively collect 
dependencies

</>

DEX

Organ Harvesting
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Include transitive dependencies4
Recursively collect 
dependencies
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</>
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Store organ in an “ice box”5
Save gadget to a database 
ready for the attack

</>

DEX

</>

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing



39

Store organ in an “ice box”5
Save gadget to a database 
ready for the attack

</></>

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing



40

Attack Overview
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Attack Overview
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Attack Overview

First pick feature with greatest ‘benign’ weight

Given a trained target model
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Attack Overview

First pick feature with greatest ‘benign’ weight

Given a trained target model

Find a corresponding organ from the ice box 
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Attack Overview
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Find a corresponding organ from the ice box 

Wrap the organ in an opaque predicate 
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</>

Attack Overview

First pick feature with greatest ‘benign’ weight

Given a trained target model

Find a corresponding organ from the ice box 

Wrap the organ in an opaque predicate 

Inject the new benign code and repackage
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Attack Overview

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing



42

Attack Overview
Continue choosing benign features until the app is misclassified

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing



43

Side-Effects
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Side-Effects Each organ contains side-effect features.
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Each organ contains side-effect features.Side-Effects
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We can sum target features,

Each organ contains side-effect features.Side-Effects
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