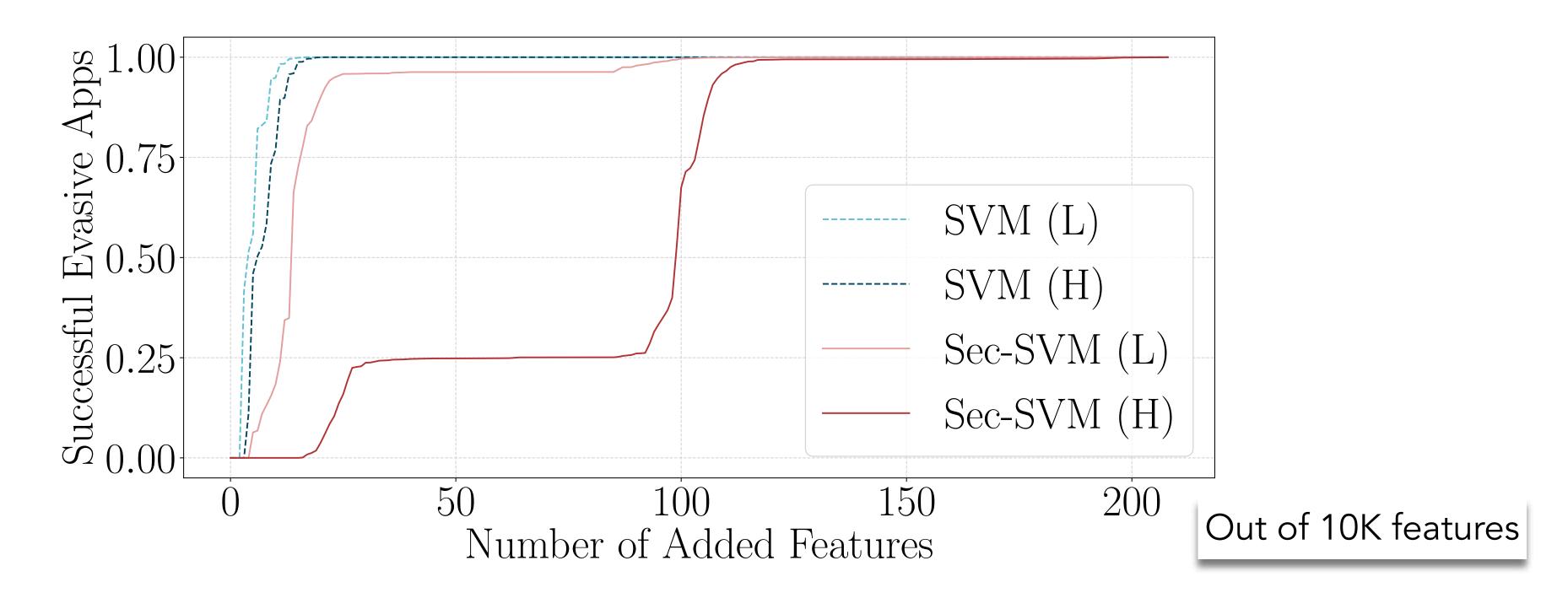
Android Attack: Experiments

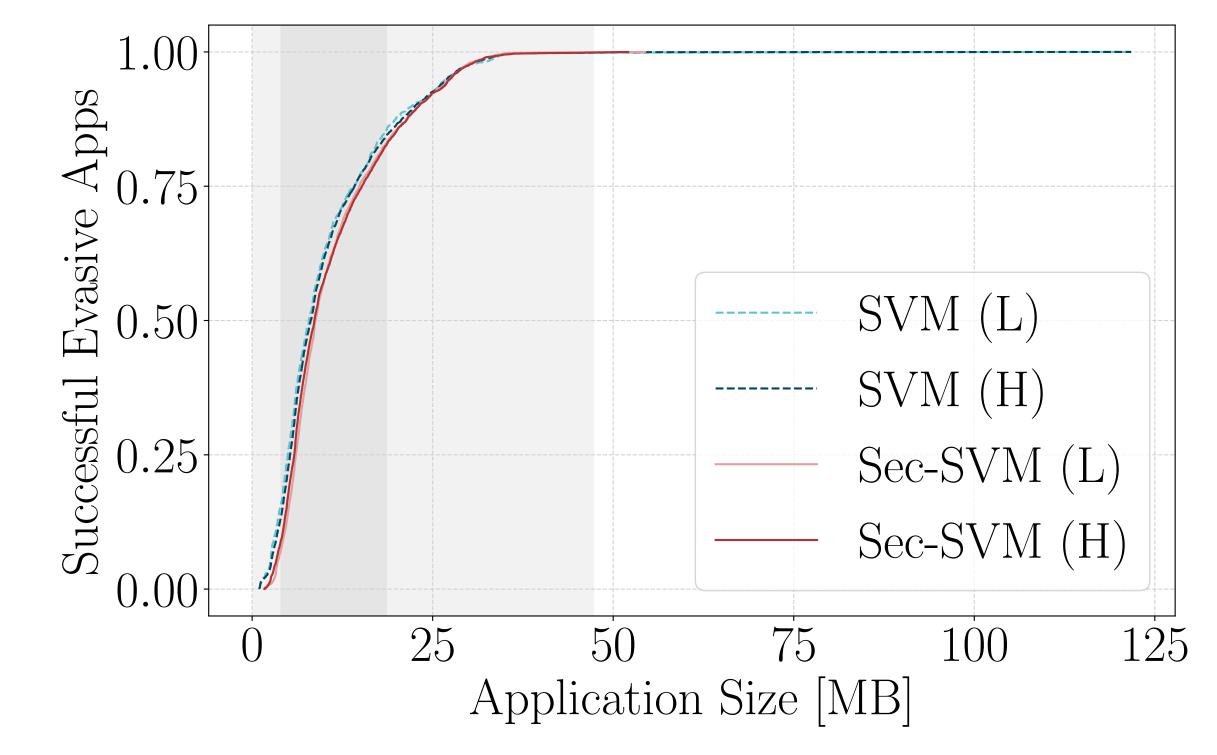
• Dataset: ~170K Android apps (10% malware) from Jan 2017 to Dec 2018

- Dataset: ~170K Android apps (10% malware) from Jan 2017 to Dec 2018
- **DREBIN** [NDSS'14]: Linear SVM, binary feature space
- Sec-SVM [TDSC'17]: Feature-space defense for DREBIN (evenly distributes weights)

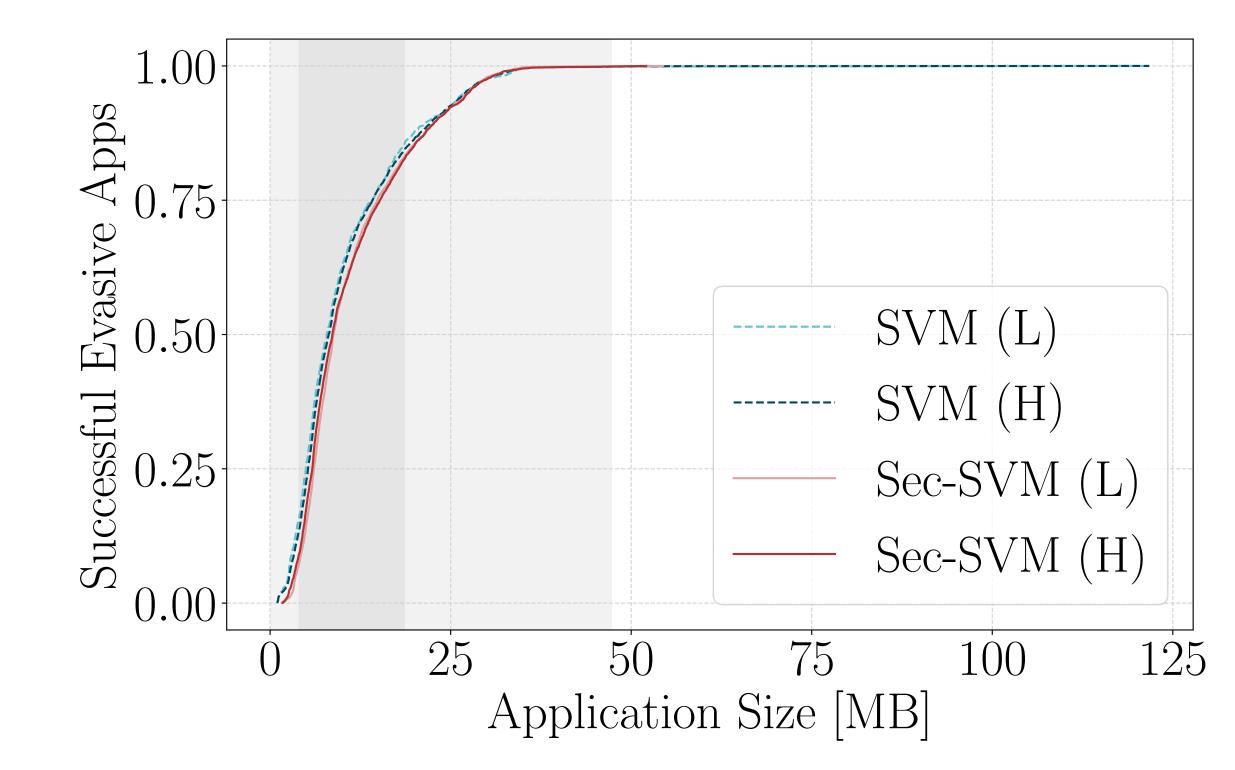
- Dataset: ~170K Android apps (10% malware) from Jan 2017 to Dec 2018
- **DREBIN** [NDSS'14]: Linear SVM, binary feature space
- Sec-SVM [TDSC'17]: Feature-space defense for DREBIN (evenly distributes weights)
- Low (L) vs High (H) confidence: cross decision boundary or cross into Q1 of benign

- Dataset: ~170K Android apps (10% malware) from Jan 2017 to Dec 2018
- **DREBIN** [NDSS'14]: Linear SVM, binary feature space
- Sec-SVM [TDSC'17]: Feature-space defense for DREBIN (evenly distributes weights)
- Low (L) vs High (H) confidence: cross decision boundary or cross into Q1 of benign

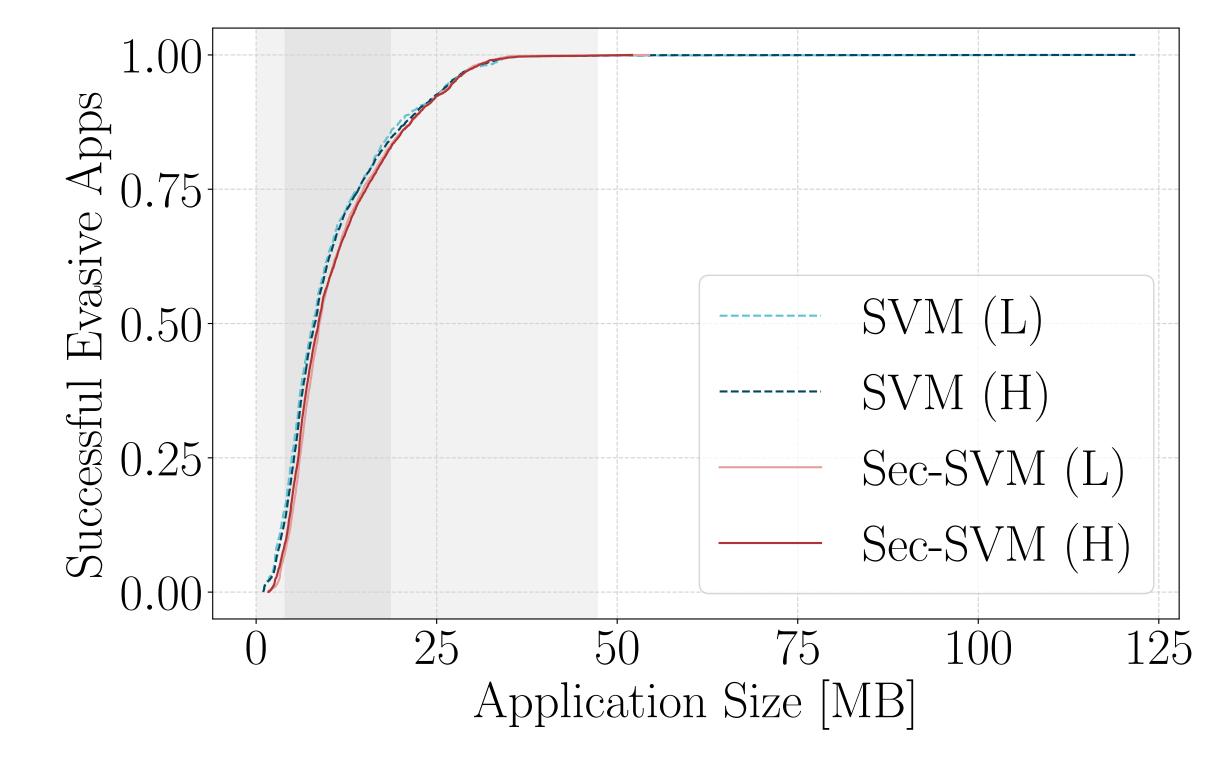




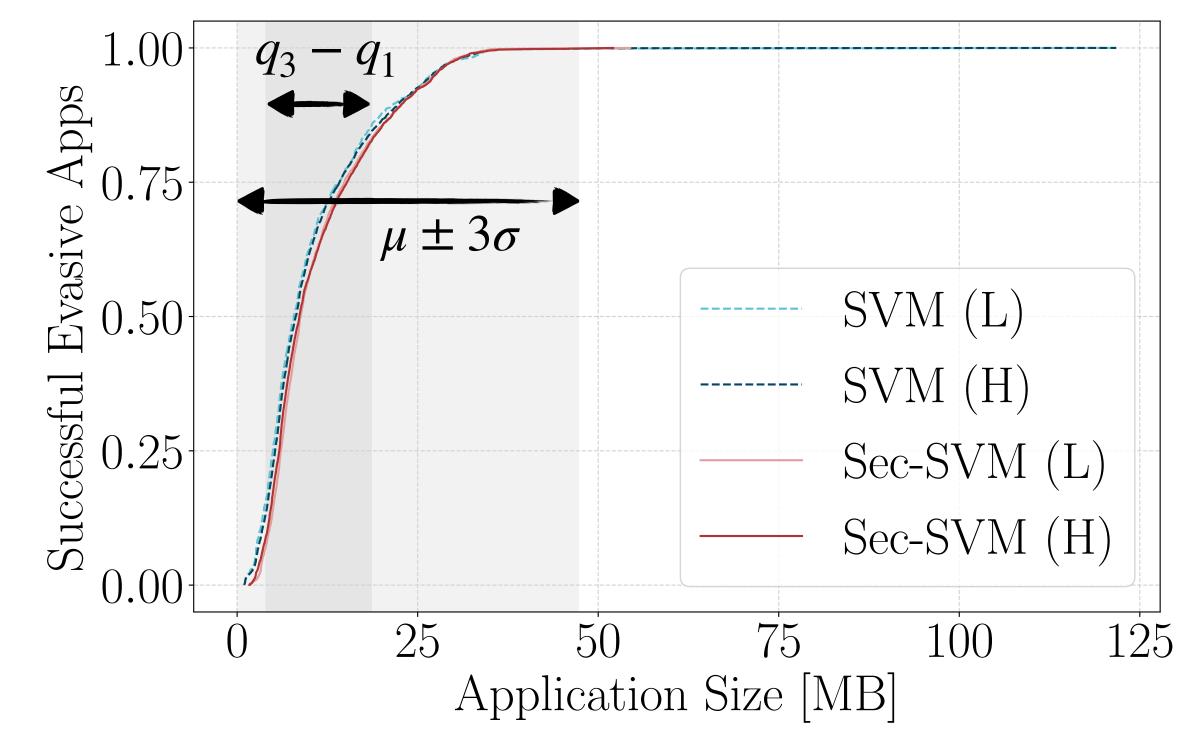
Adversarial generation < 2 minutes per app



- Adversarial generation < 2 minutes per app
- Restricting feature-space perturbations δ does not hinder problem-space attack

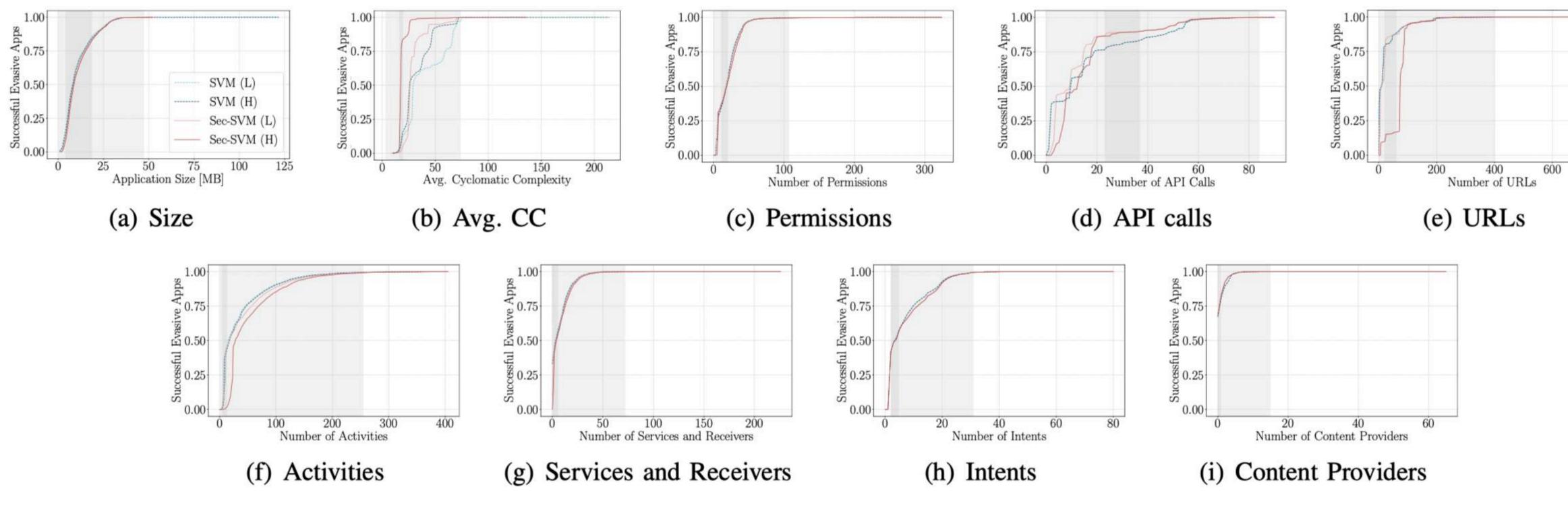


- Adversarial generation < 2 minutes per app
- Restricting feature-space perturbations δ does not hinder problem-space attack
- App statistics (e.g., size) do not become anomalous after injection



Results: How much are app statistics affected?

- >



[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space https://s2lab.kcl.ac.uk/projects/intriguing

• Adding all these features (+ side-effect features), what does it do to app statistics? Limiting feature-space perturbations δ does not affect problem-space attack

Outline

Adversarial ML evasion attacks against malware classifiers

- Classic formulation of evasion attacks is ill-suited for reasoning about realizable evasive malware
- By reformulating, we can propose stronger attacks and easily compare against alternatives
- Practical end-to-end automatic adversarial malware as a service how about defenses?

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space

Drifting scenarios caused by threats evolving over time

- How dataset shift affects machine learning-based detectors in security settings
- The need for time-aware evaluations and metrics
- Detecting shifts with abstaining classifiers and classification with rejection

[USENIX Sec 2017 & IEEE S&P 2022] Transcend: Detecting Concept Drift in Malware Classification Models & Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift

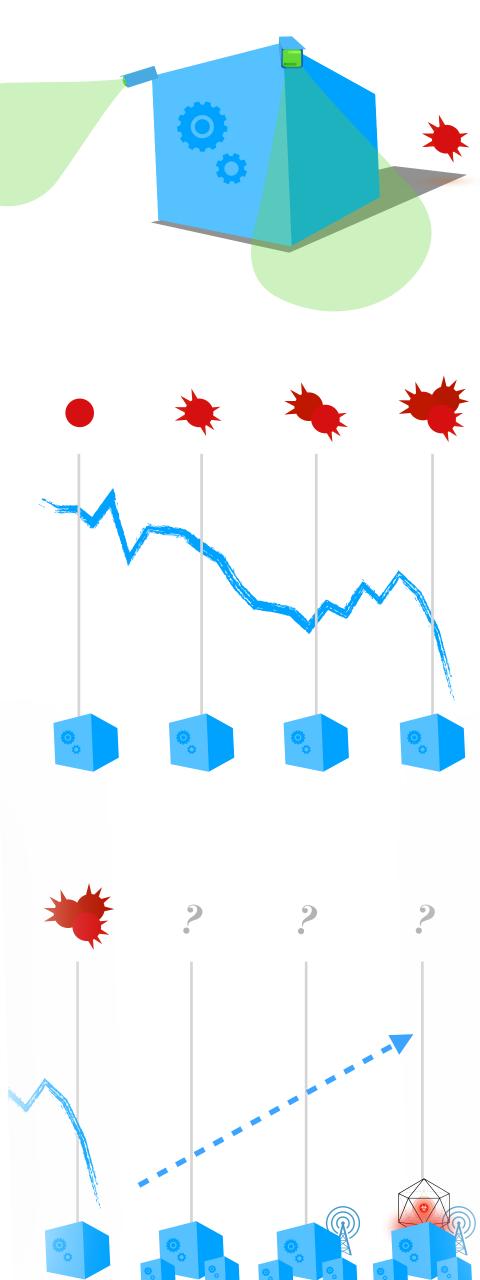
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time

Quo vadis?

- Discussion of the future of trustworthy ML for system security
- Robust feature development, universal adversarial perturbations, realizable backdoors, drift forecasting, and the role of abstractions towards the Platonic ideal of interesting behaviors

[USENIX Sec 2022] Dos and Don'ts of Machine Learning in Com

Focus



Outline

Adversarial ML evasion attacks against malware classifiers

- Classic formulation of evasion attacks is ill-suited for reasoning about realizable evasive malware
- By reformulating, we can propose stronger attacks and easily compare against alternatives
- Practical end-to-end automatic adversarial malware as a service how about defenses?

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space

Drifting scenarios caused by threats evolving over time

- How dataset shift affects machine learning-based detectors in security settings
- The need for time-aware evaluations and metrics
- Detecting shifts with abstaining classifiers and classification with rejection

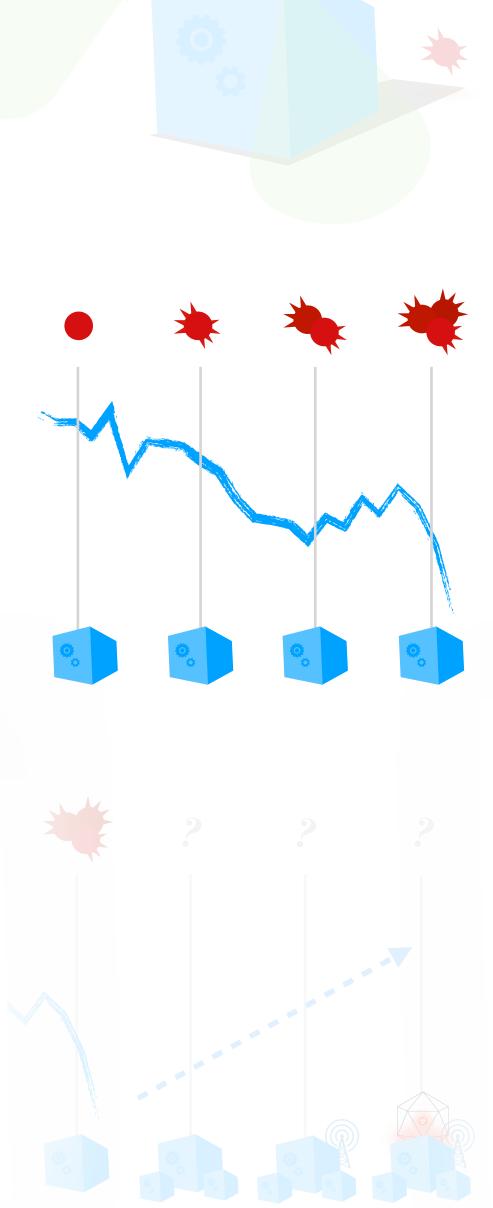
[USENIX Sec 2017 & IEEE S&P 2022] Transcend: Detecting Concept Drift in Malware Classification Models & Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift

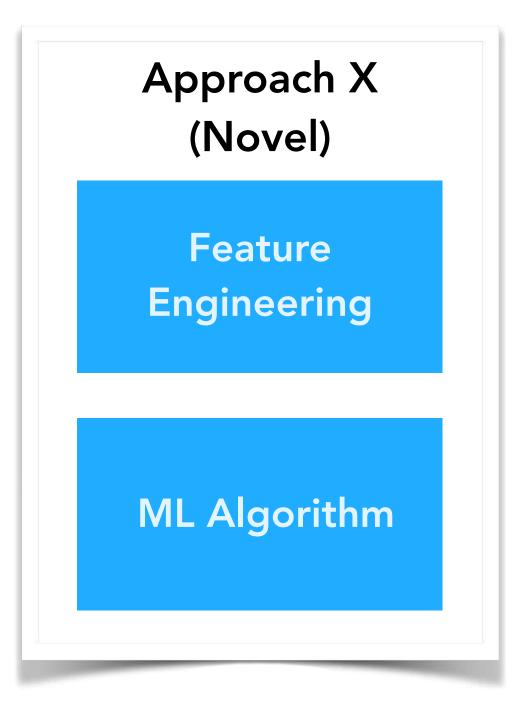
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time

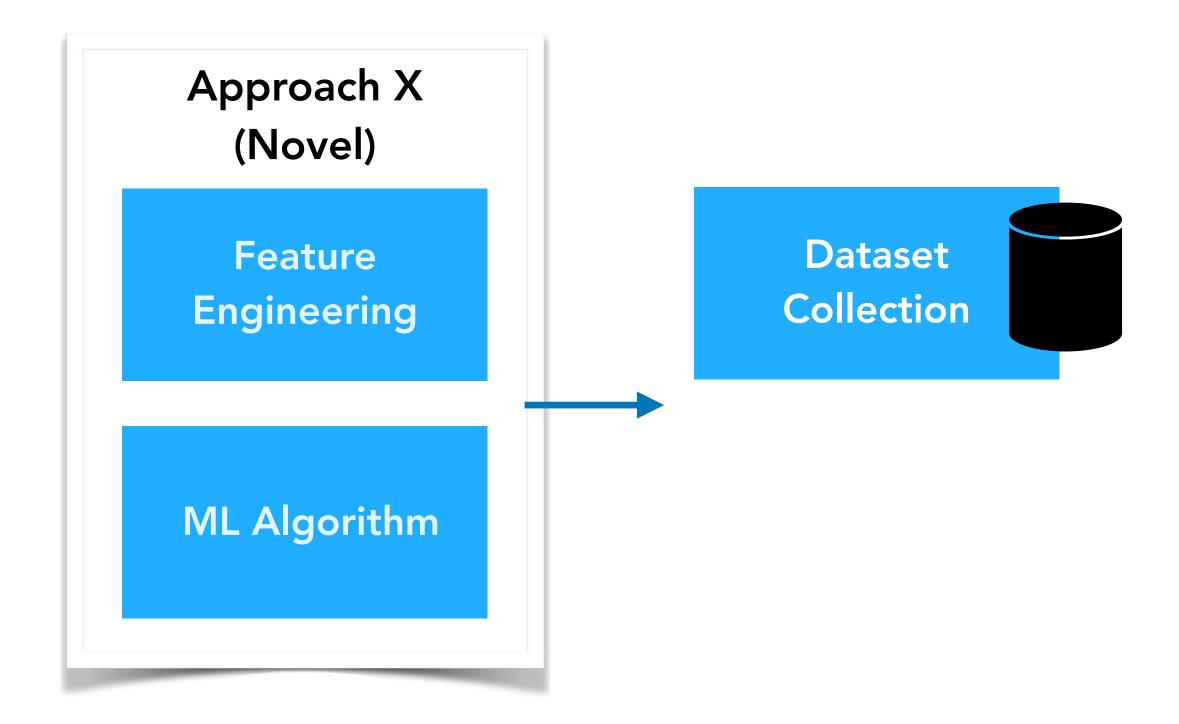
Quo vadis?

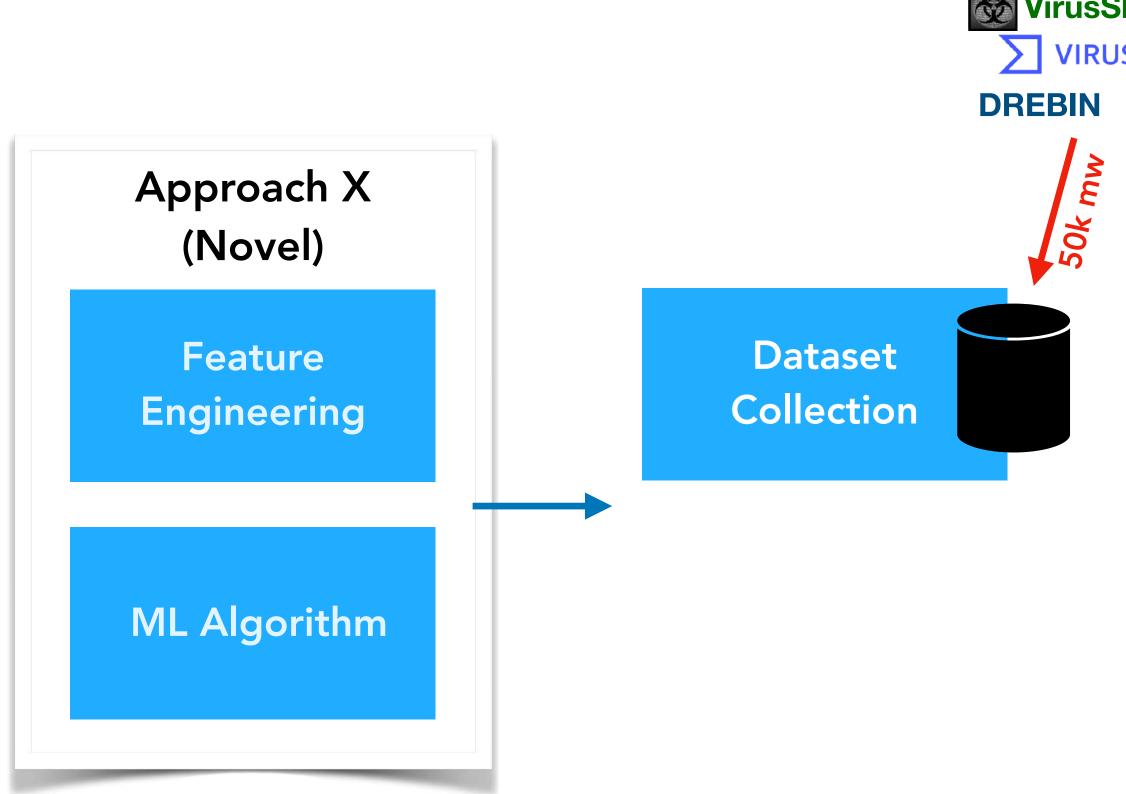
- Discussion of the future of trustworthy ML for system security
- Robust feature development, universal adversarial perturbations, realizable backdoors, drift forecasting, and the role of abstractions towards the Platonic ideal of interesting behaviors

[USENIX Sec 2022] Dos and Don'ts of Machine Learning in Com



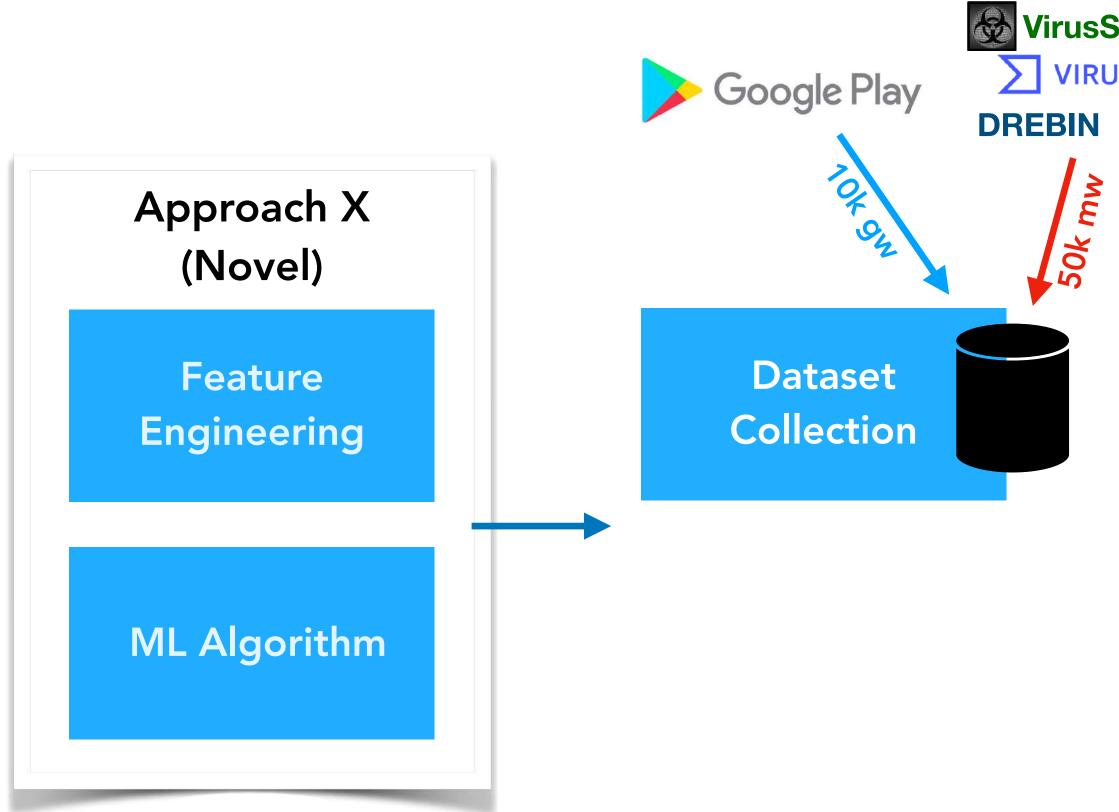






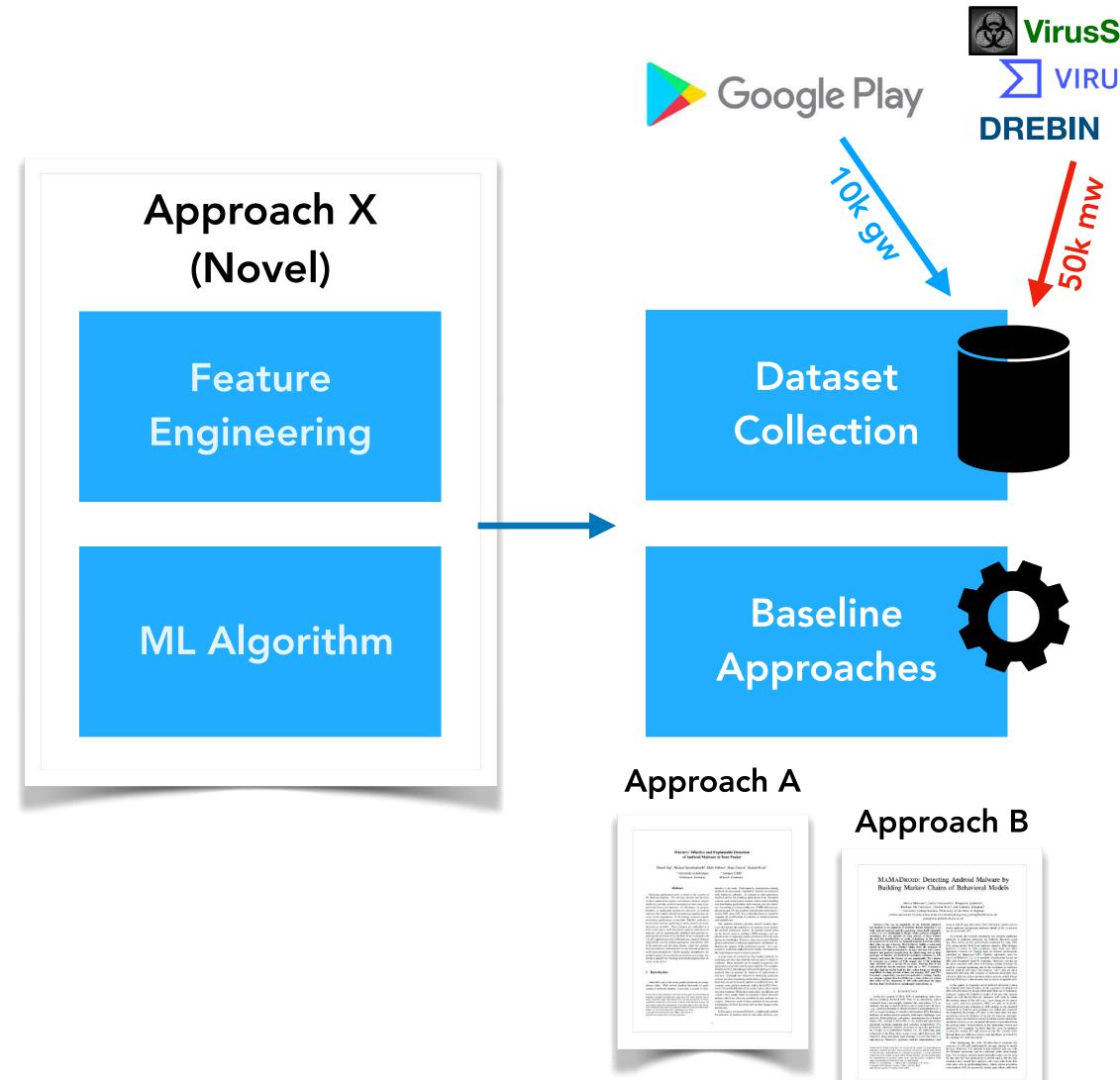
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

VirusShare Kharon VIRUSTOTAL DREBIN MalGenome



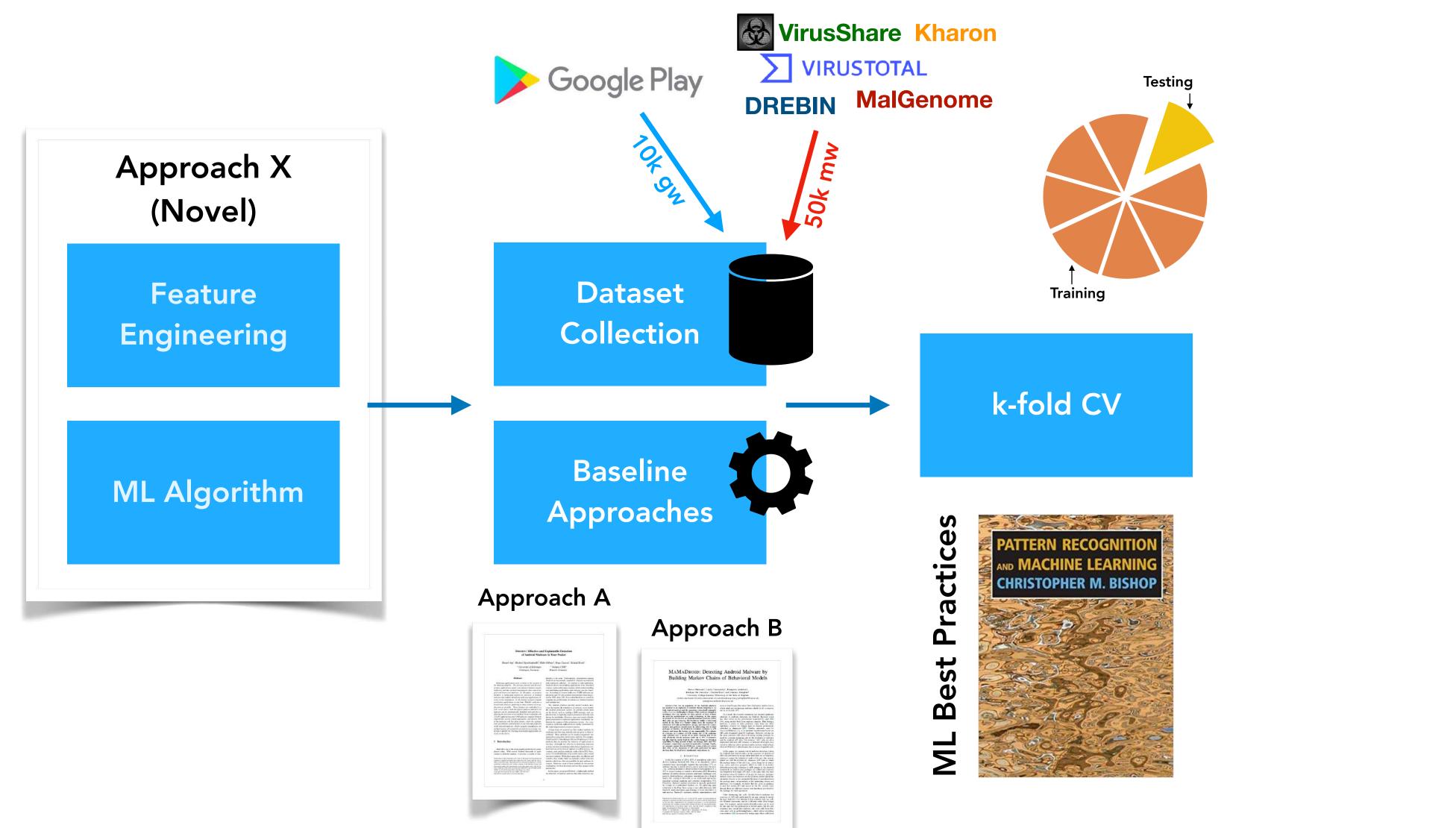
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

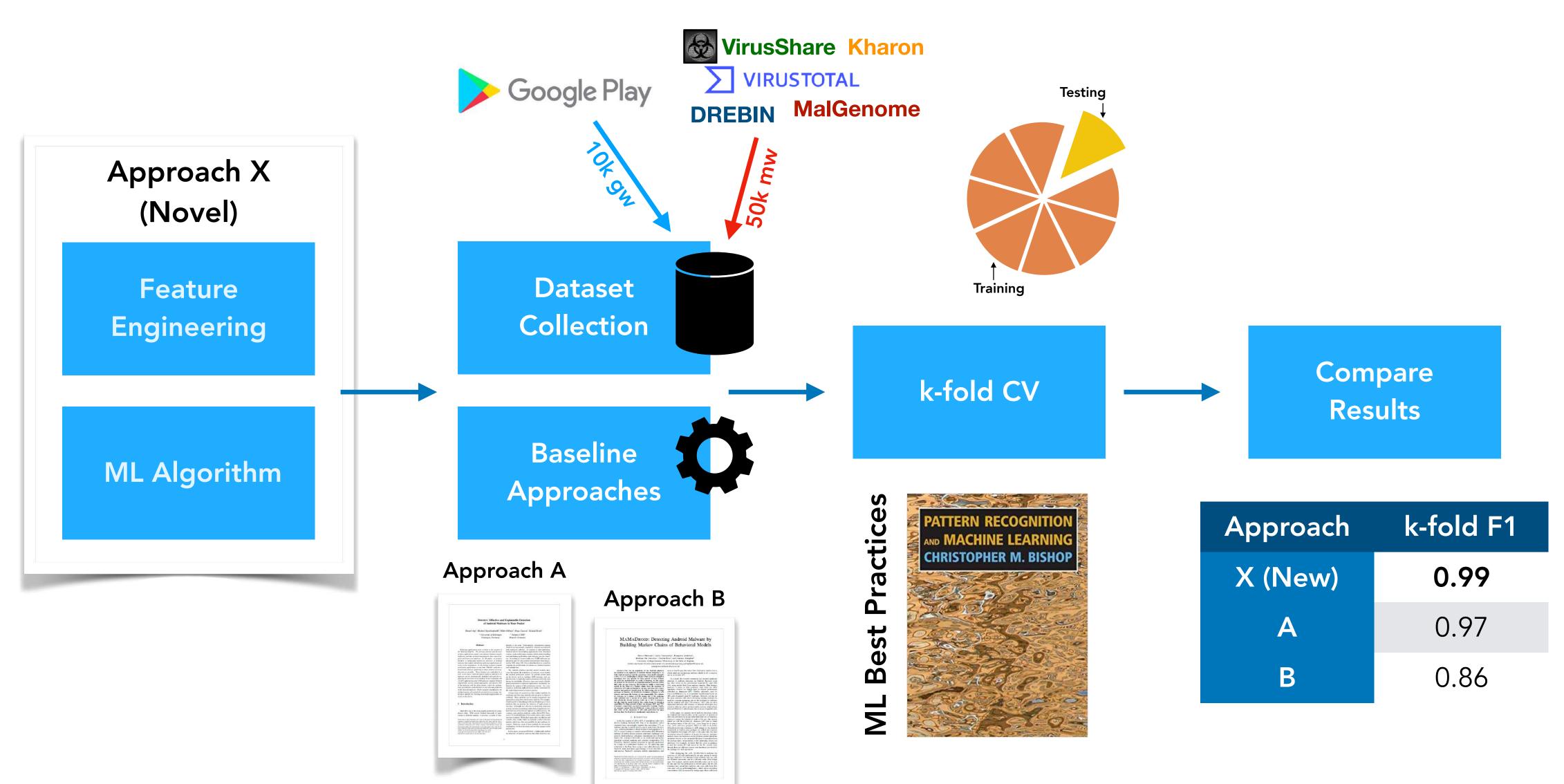
VirusShare Kharon VIRUSTOTAL DREBIN MalGenome

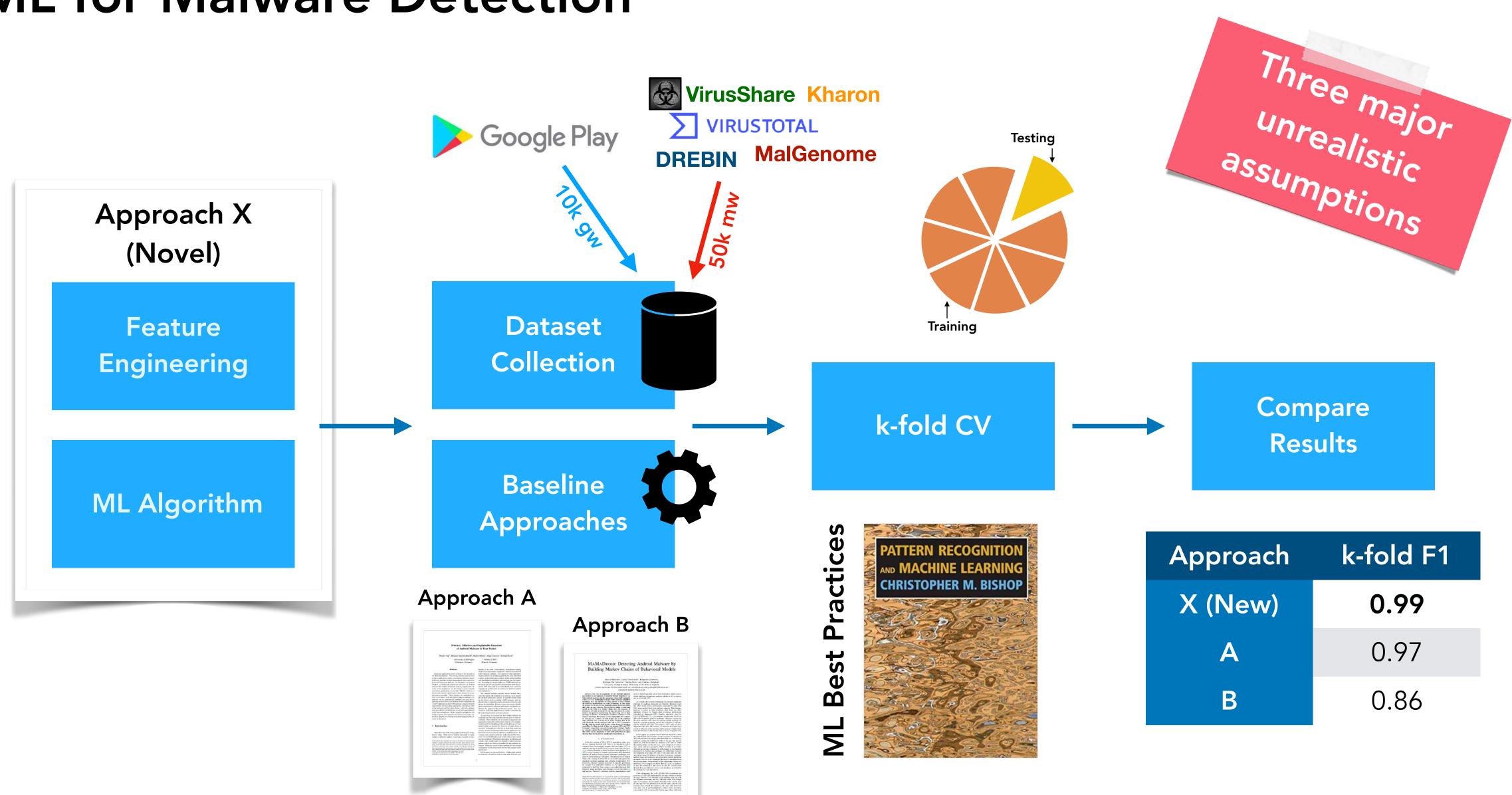


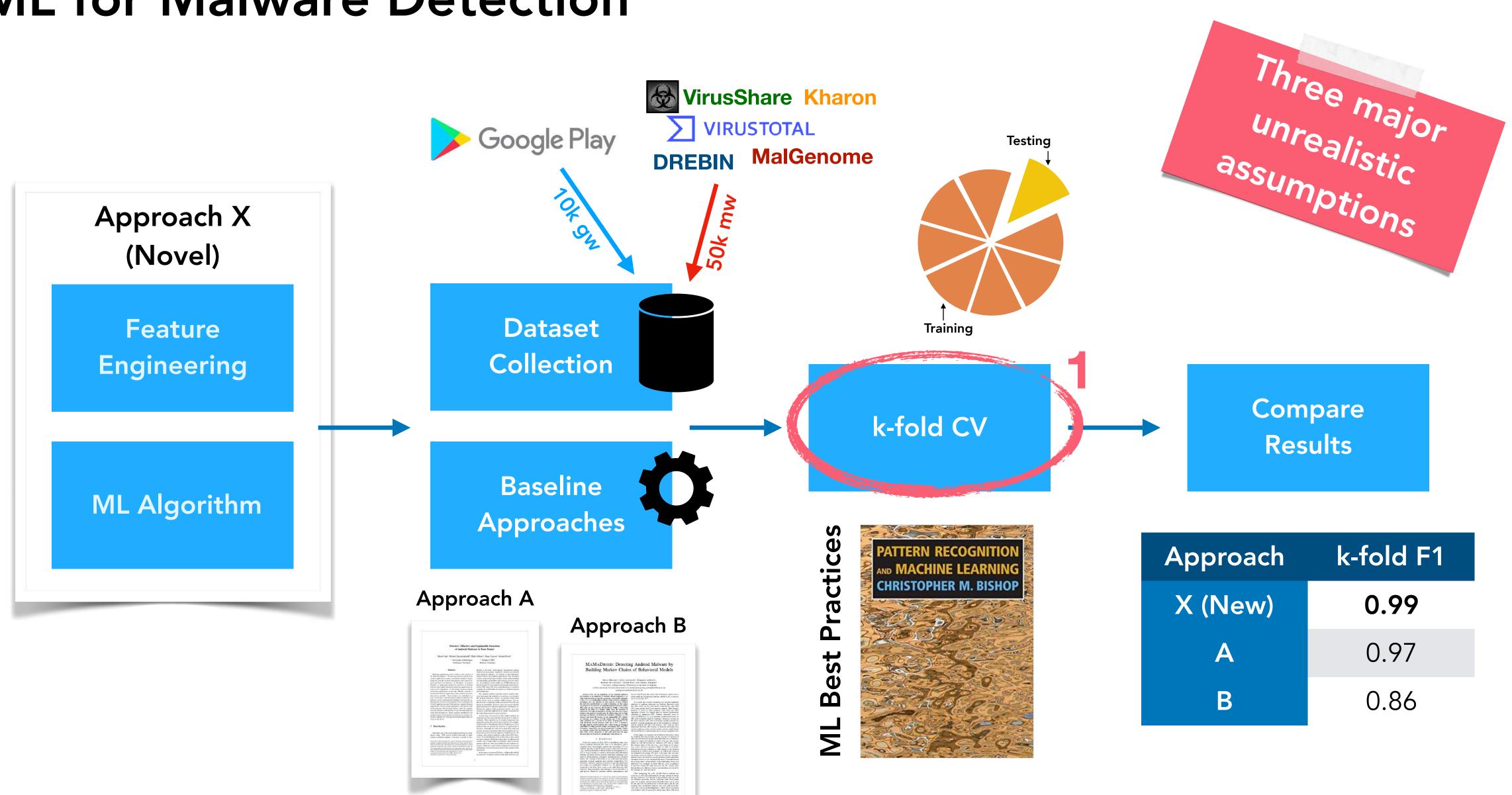
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

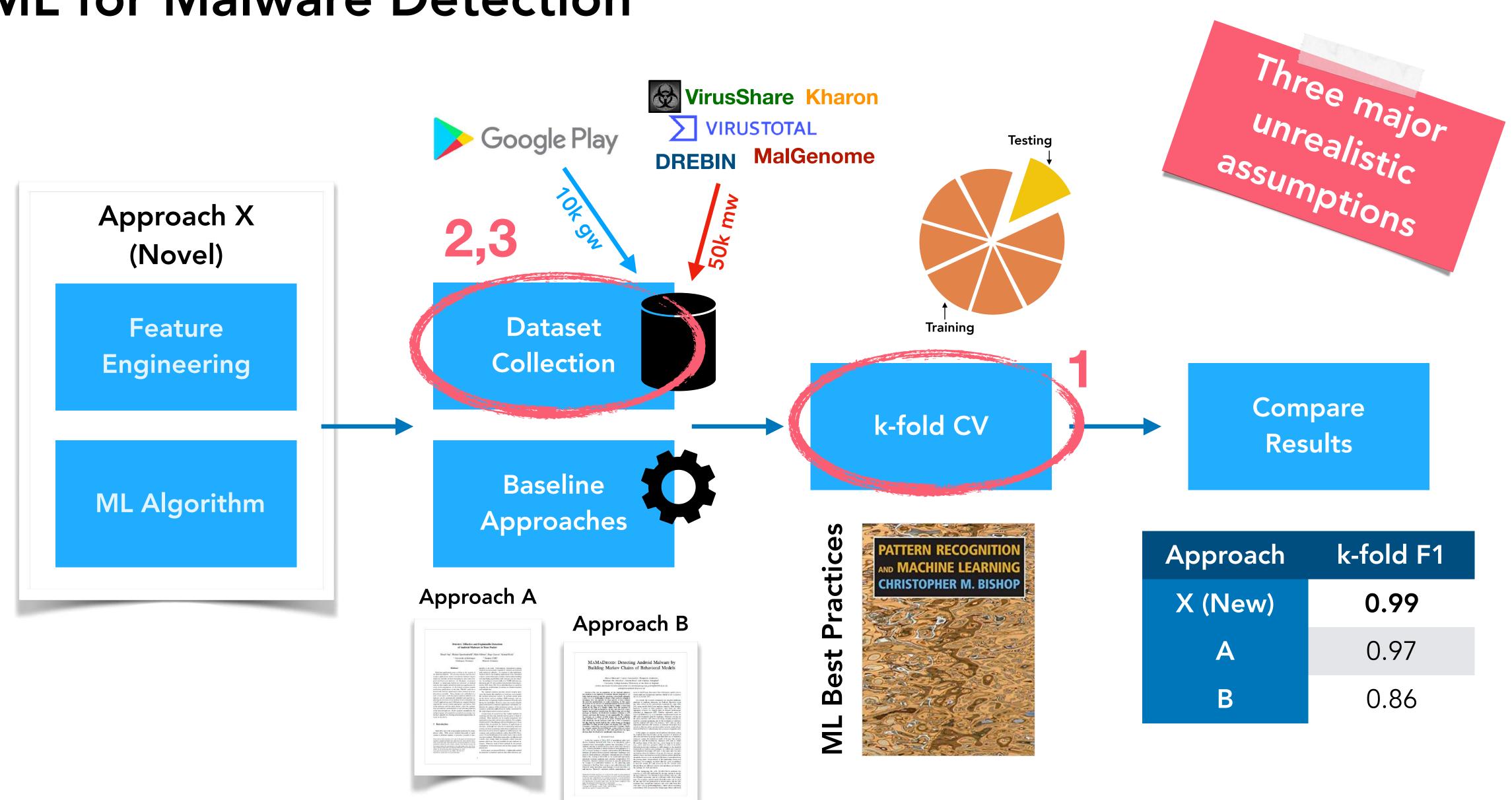
VirusShare Kharon **VIRUSTOTAL DREBIN** MalGenome











Sources of Experimental Bias (1/3) **Temporal Inconsistency in Train/Test Sets**

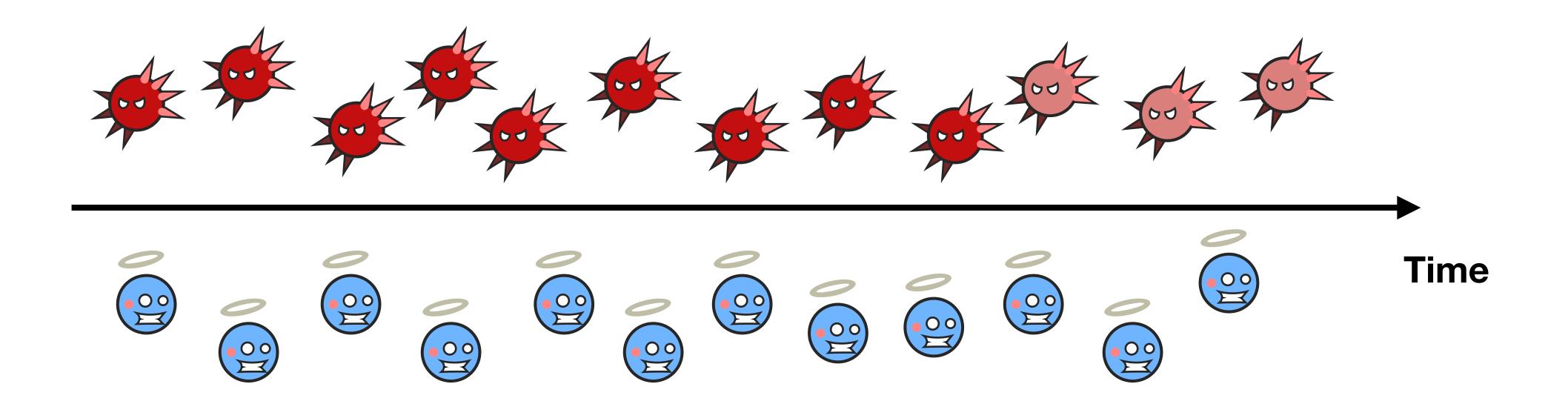
Temporal Inconsistency in Train/Test Sets

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

(1/3) t Sets

Time

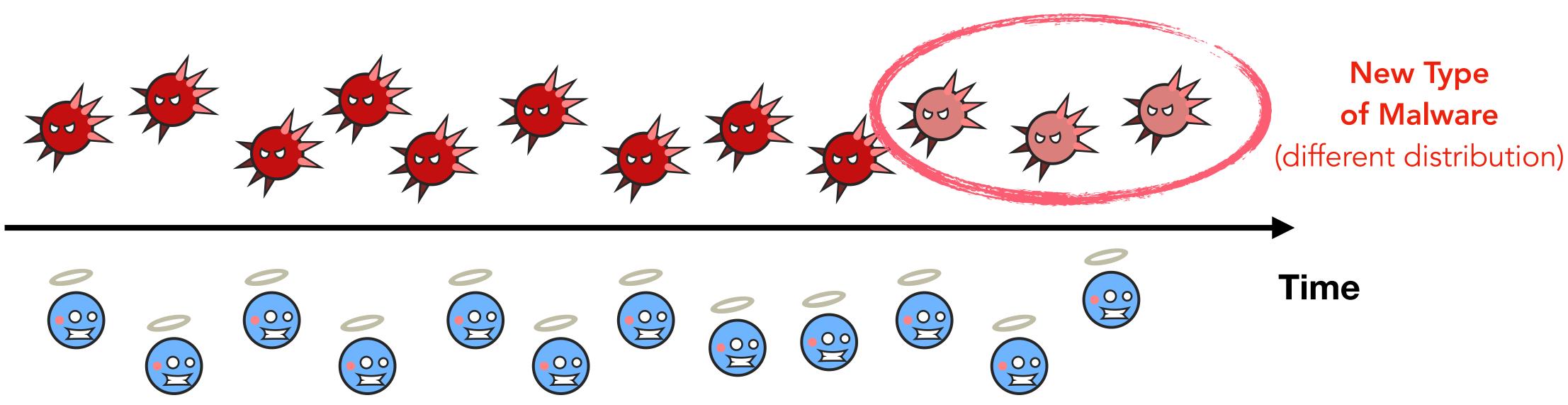
Temporal Inconsistency in Train/Test Sets



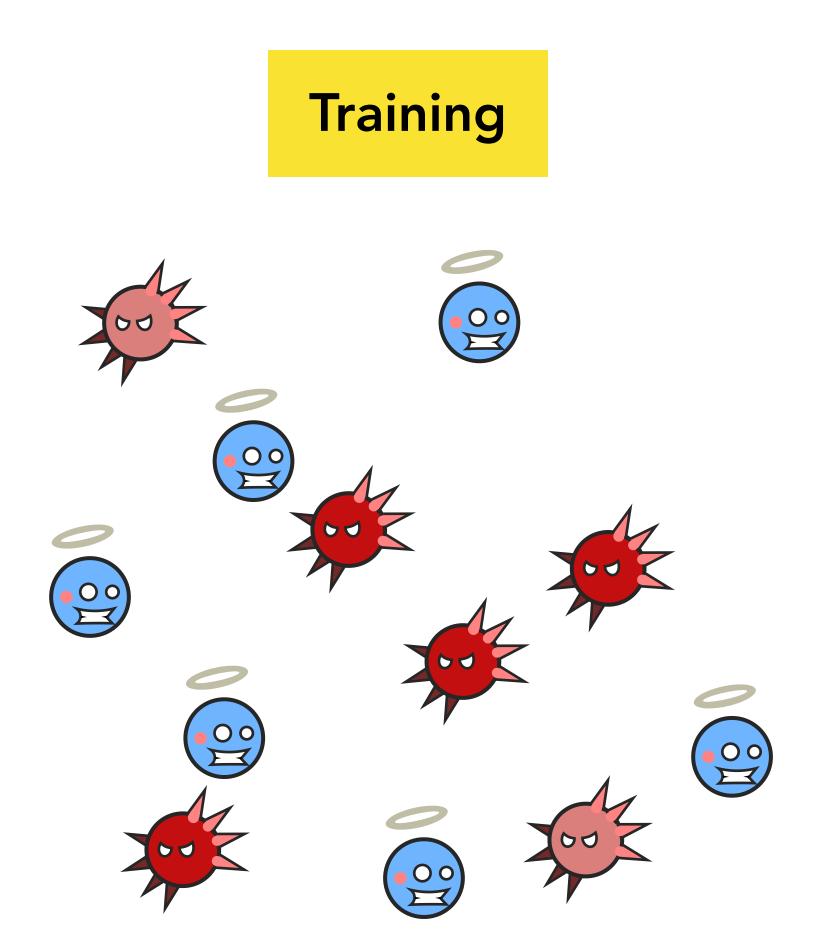
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

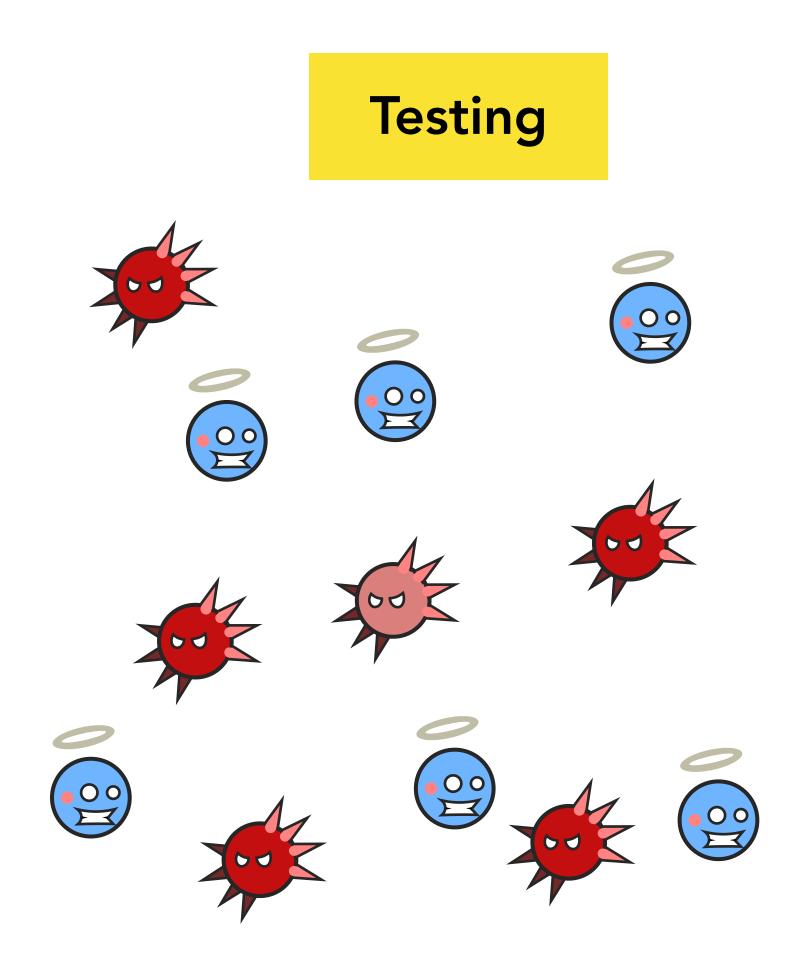
(1/3) t Sets

Temporal Inconsistency in Train/Test Sets

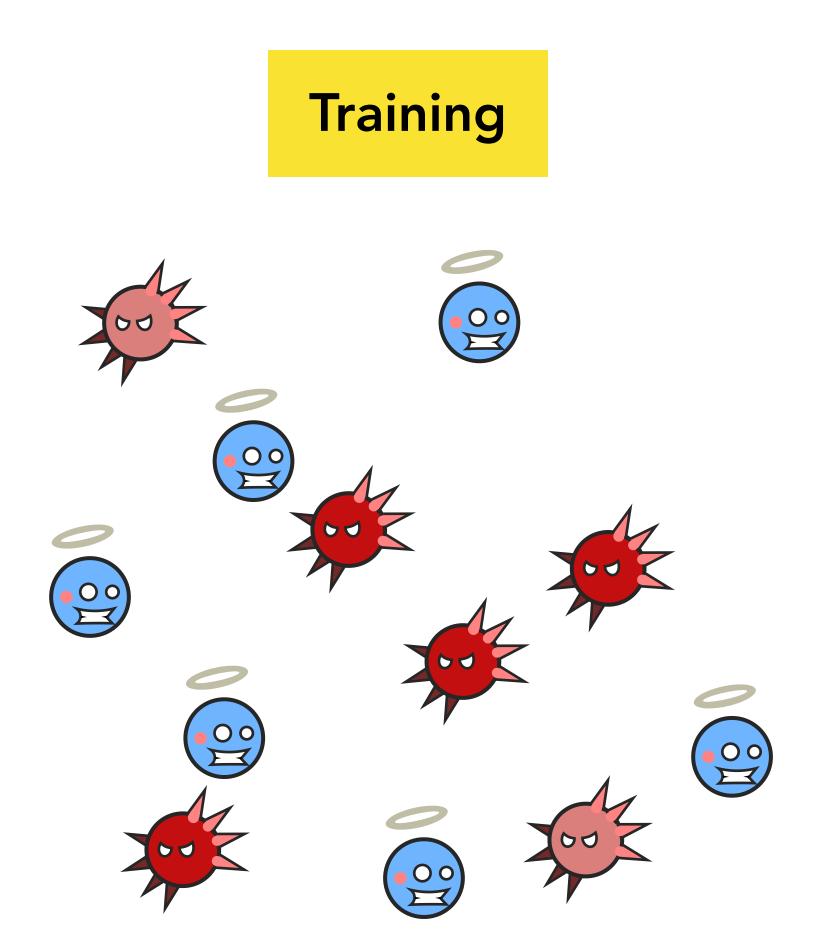


Temporal Inconsistency in Train/Test Sets



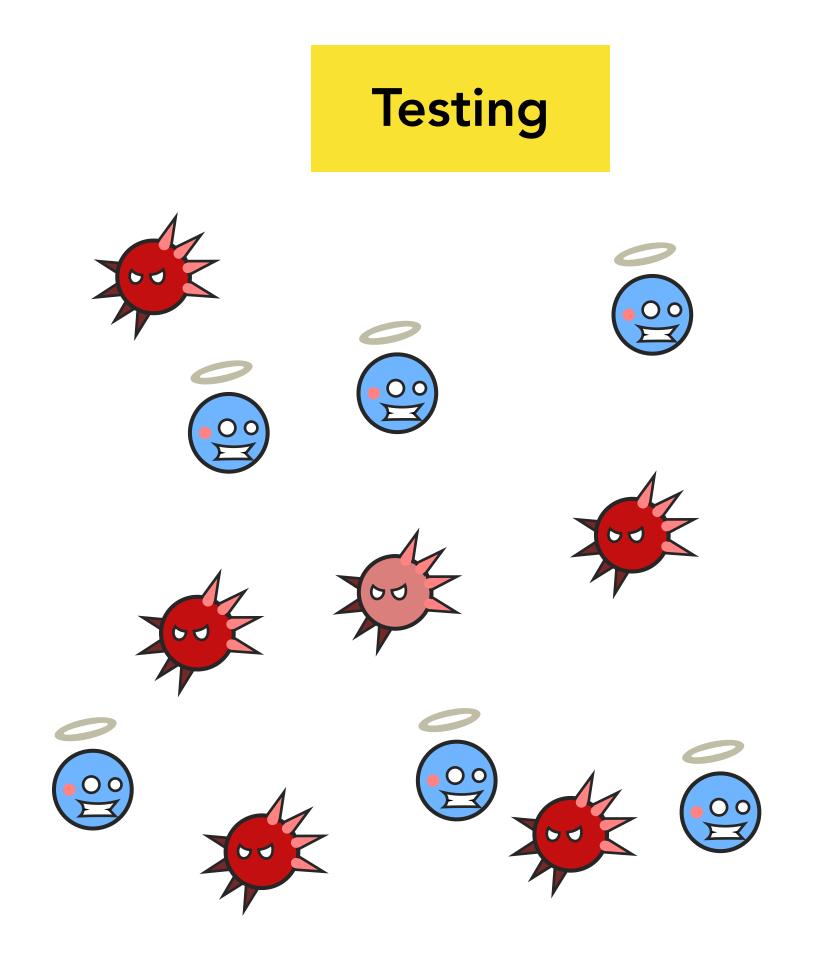


Temporal Inconsistency in Train/Test Sets



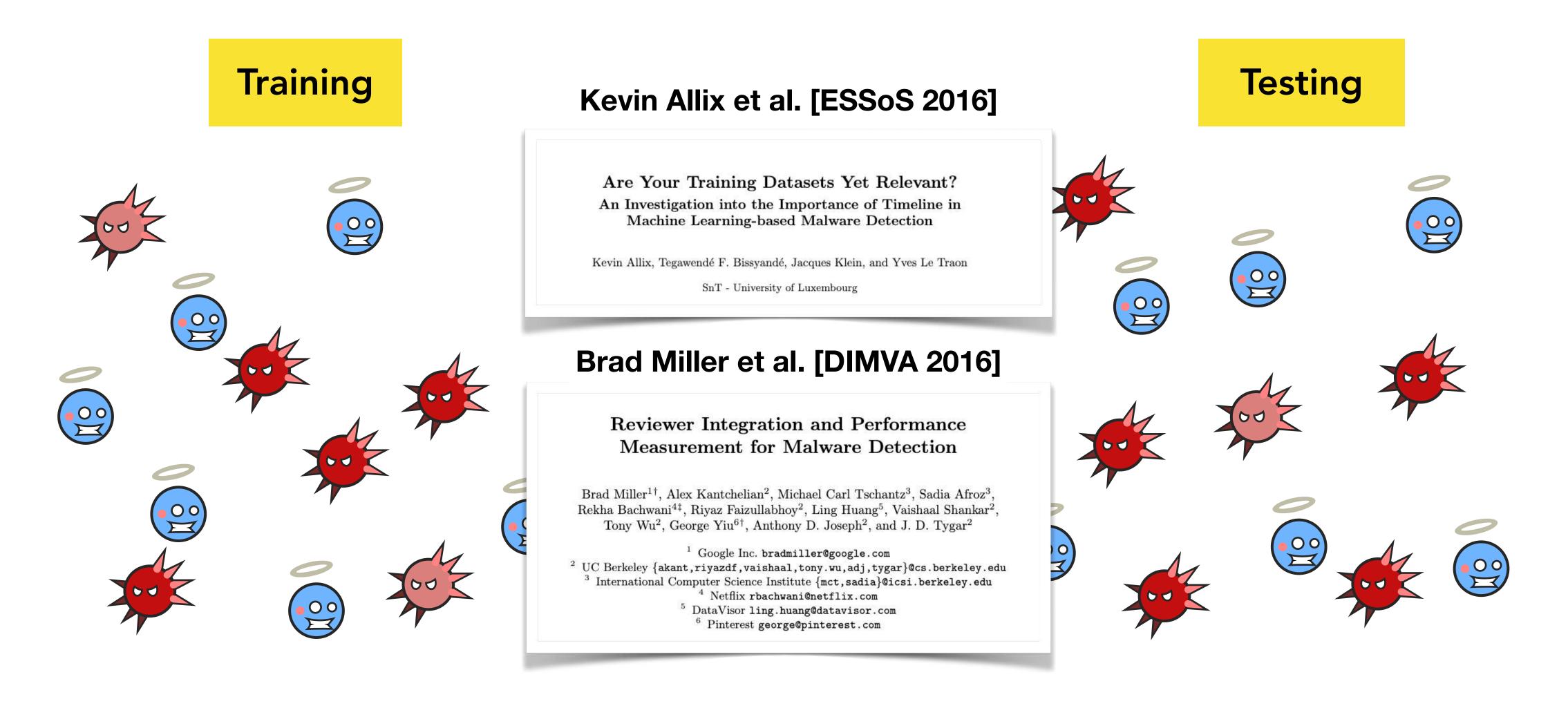
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

Violations use future knowledge in training



53

Temporal Inconsistency in Train/Test Sets



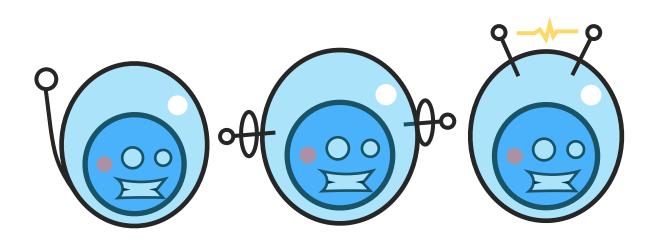
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

Violations use future knowledge in training

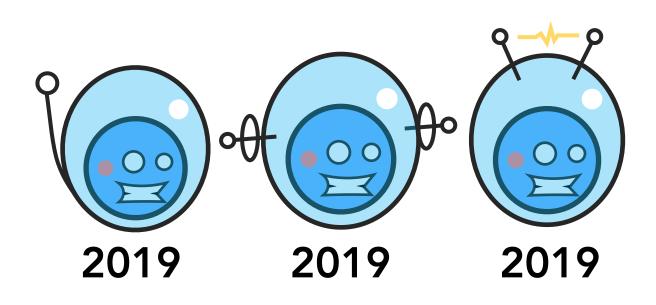
53

Temporal {good|mal}ware inconsistency

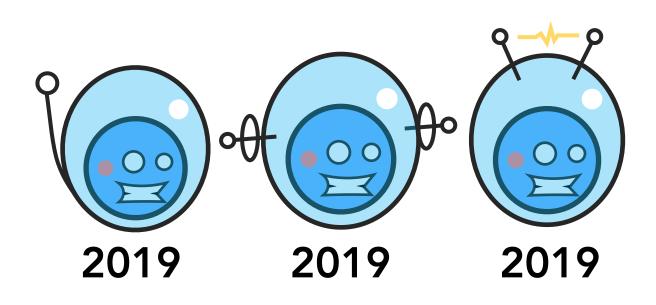
Temporal {good|mal}ware inconsistency

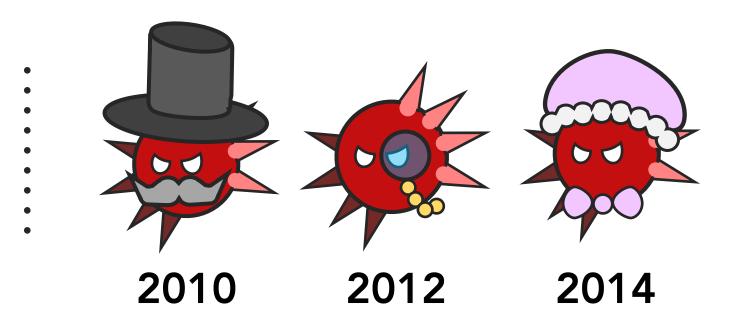


Temporal {good|mal}ware inconsistency

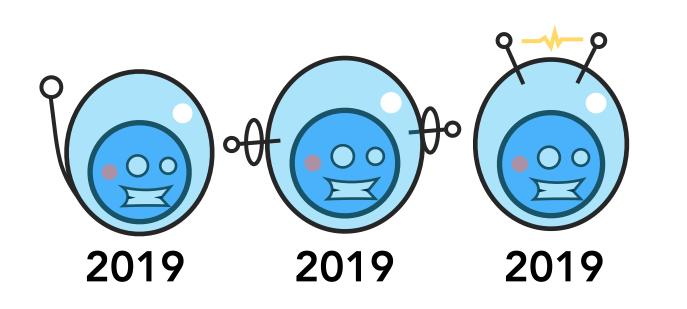


Temporal {good|mal}ware inconsistency

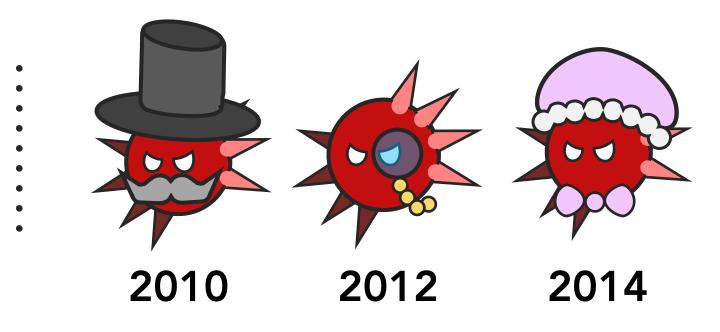




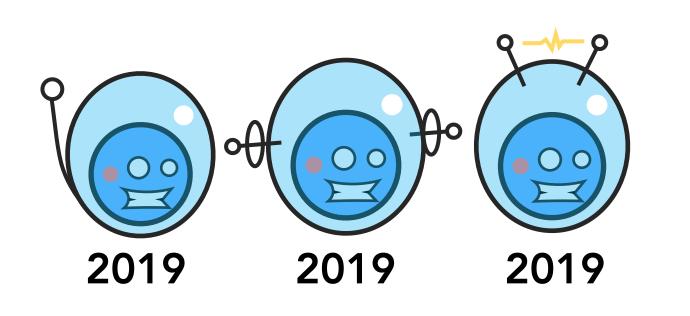
Temporal {good|mal}ware inconsistency



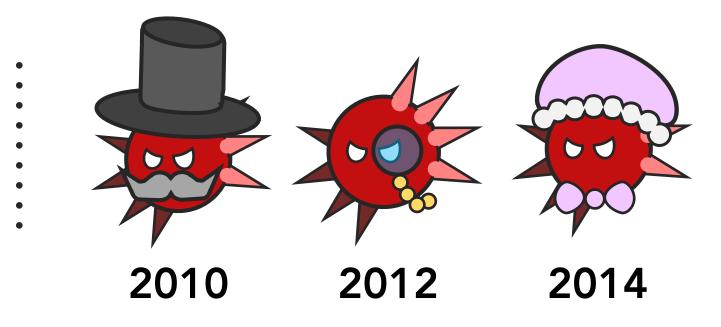
new_method()



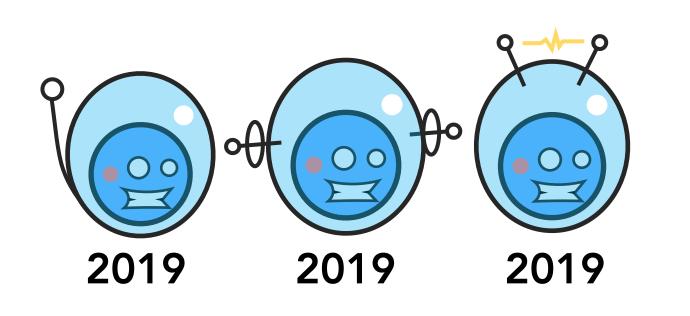
Temporal {good|mal}ware inconsistency



new_method()

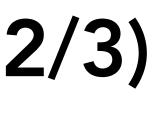


Temporal {good|mal}ware inconsistency

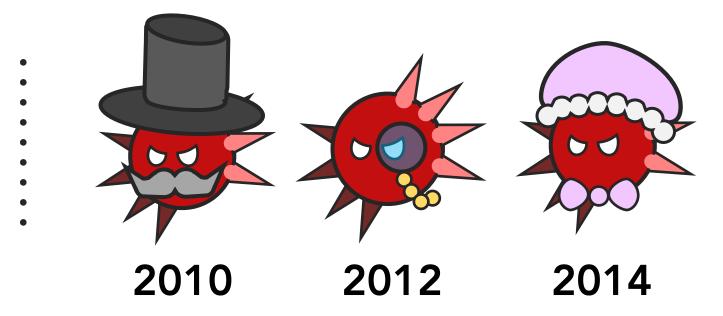


new_method()

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract



Violations may learn artifacts



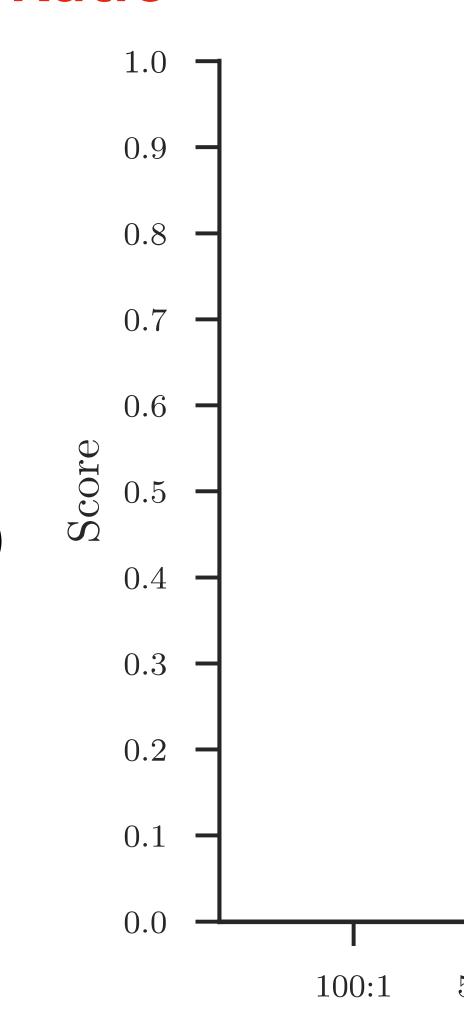
Unrealistic Test Class Ratio

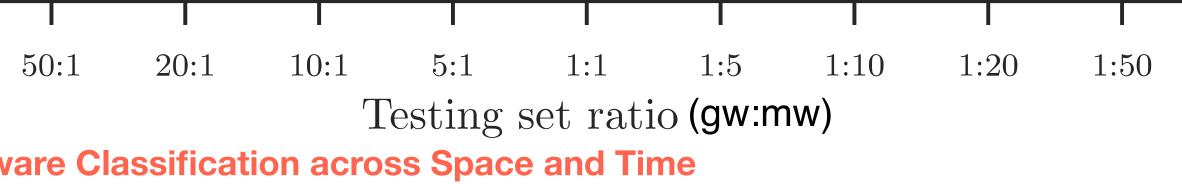
Unrealistic Test Class Ratio

- Training set: Fixed
- Testing set: Varying % of mw (by downsampling gw)

Unrealistic Test Class Ratio

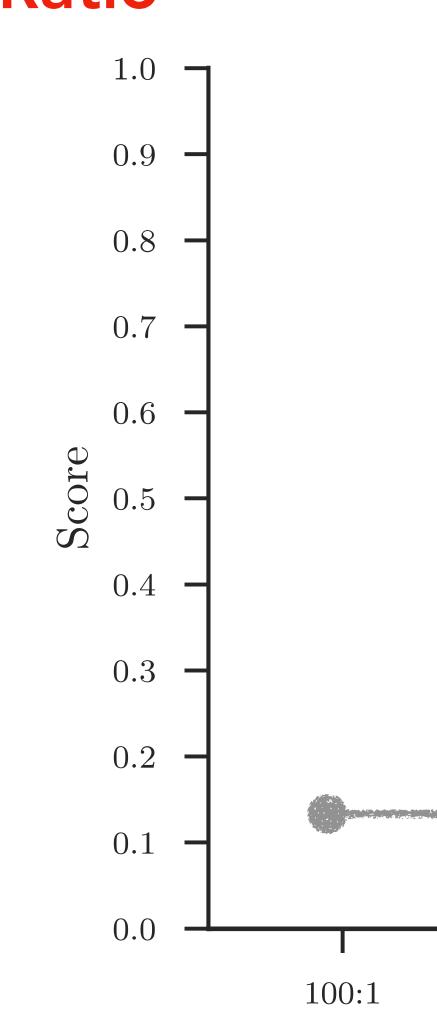
- Training set: Fixed
- Testing set: Varying % of mw (by downsampling gw)





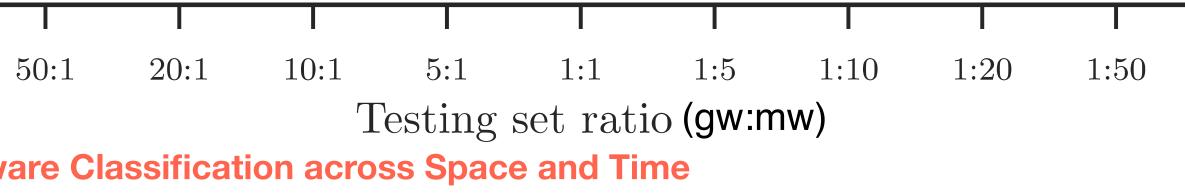
Unrealistic Test Class Ratio

- Training set: Fixed
- Testing set: Varying % of mw (by downsampling gw)



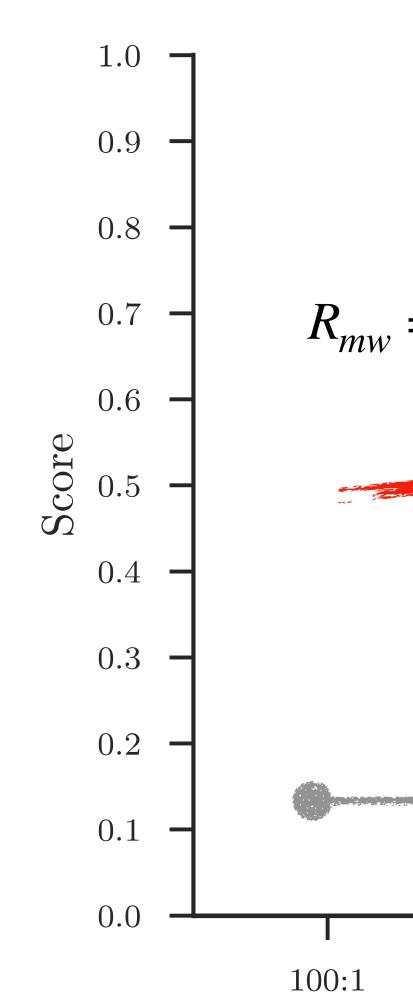
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

Higher % of malware in testing



Unrealistic Test Class Ratio

- Training set: Fixed
- **Testing set**: Varying % of mw (by downsampling gw)

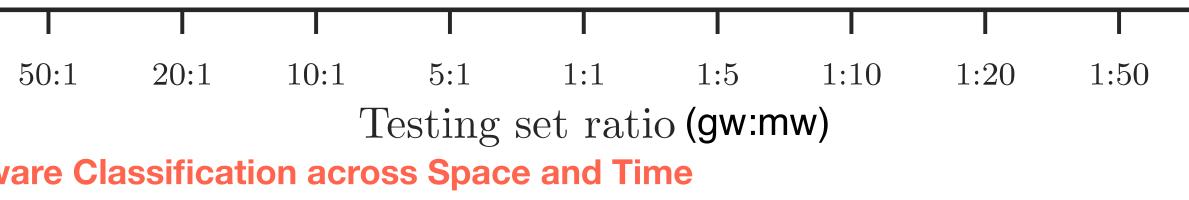


[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

TP

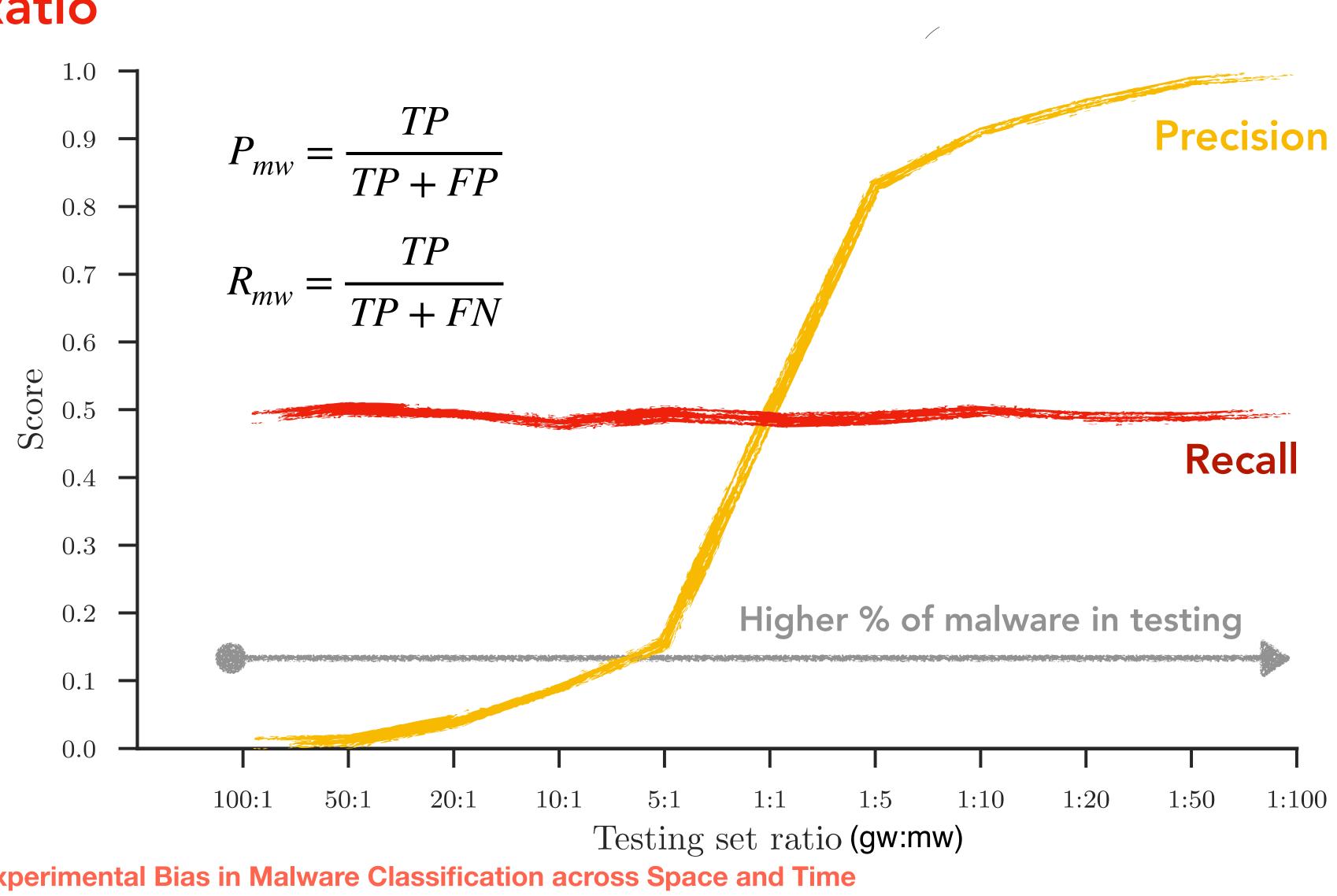
Recall

Higher % of malware in testing



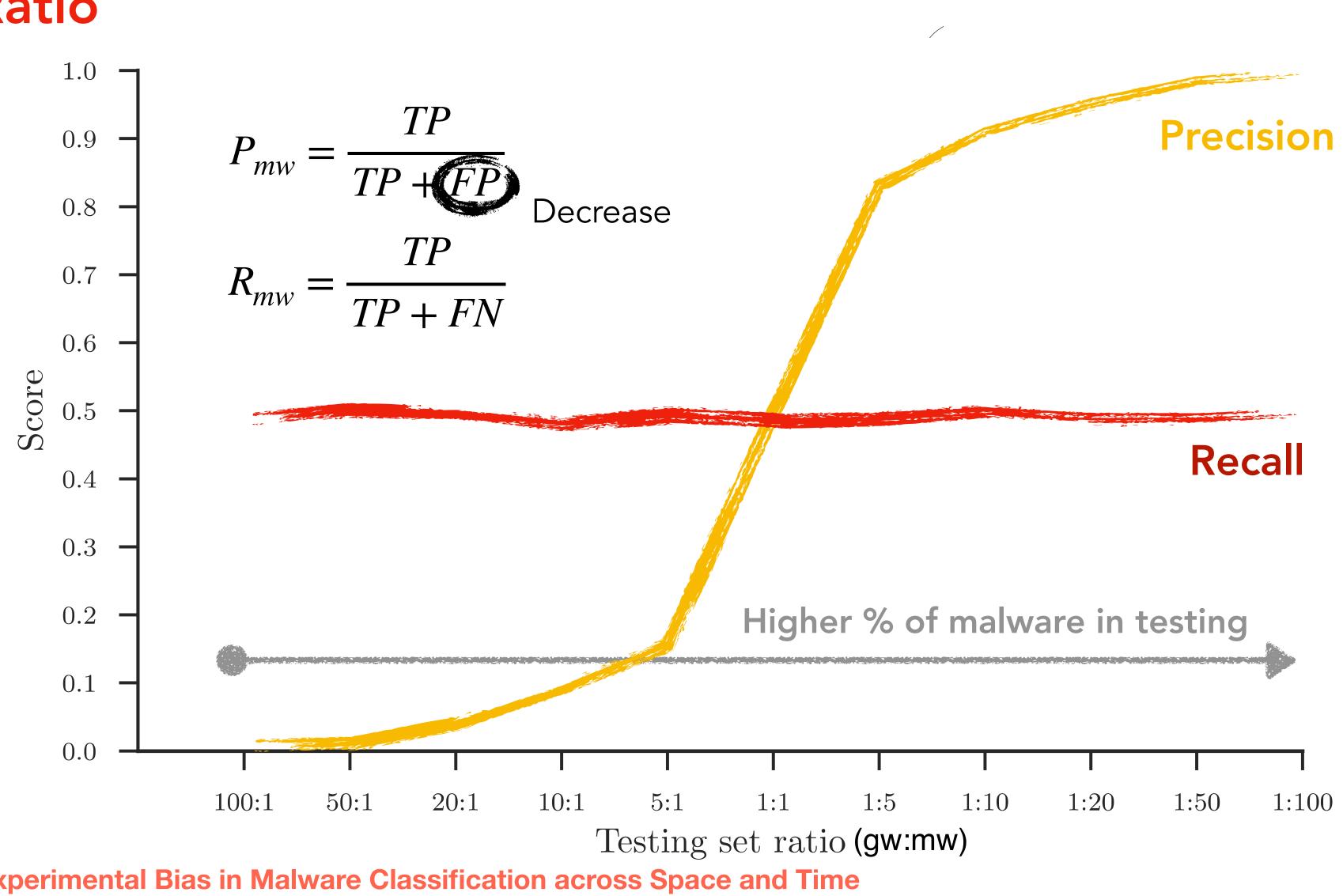
Unrealistic Test Class Ratio

- Training set: Fixed
- **Testing set**: Varying % of mw (by downsampling gw)



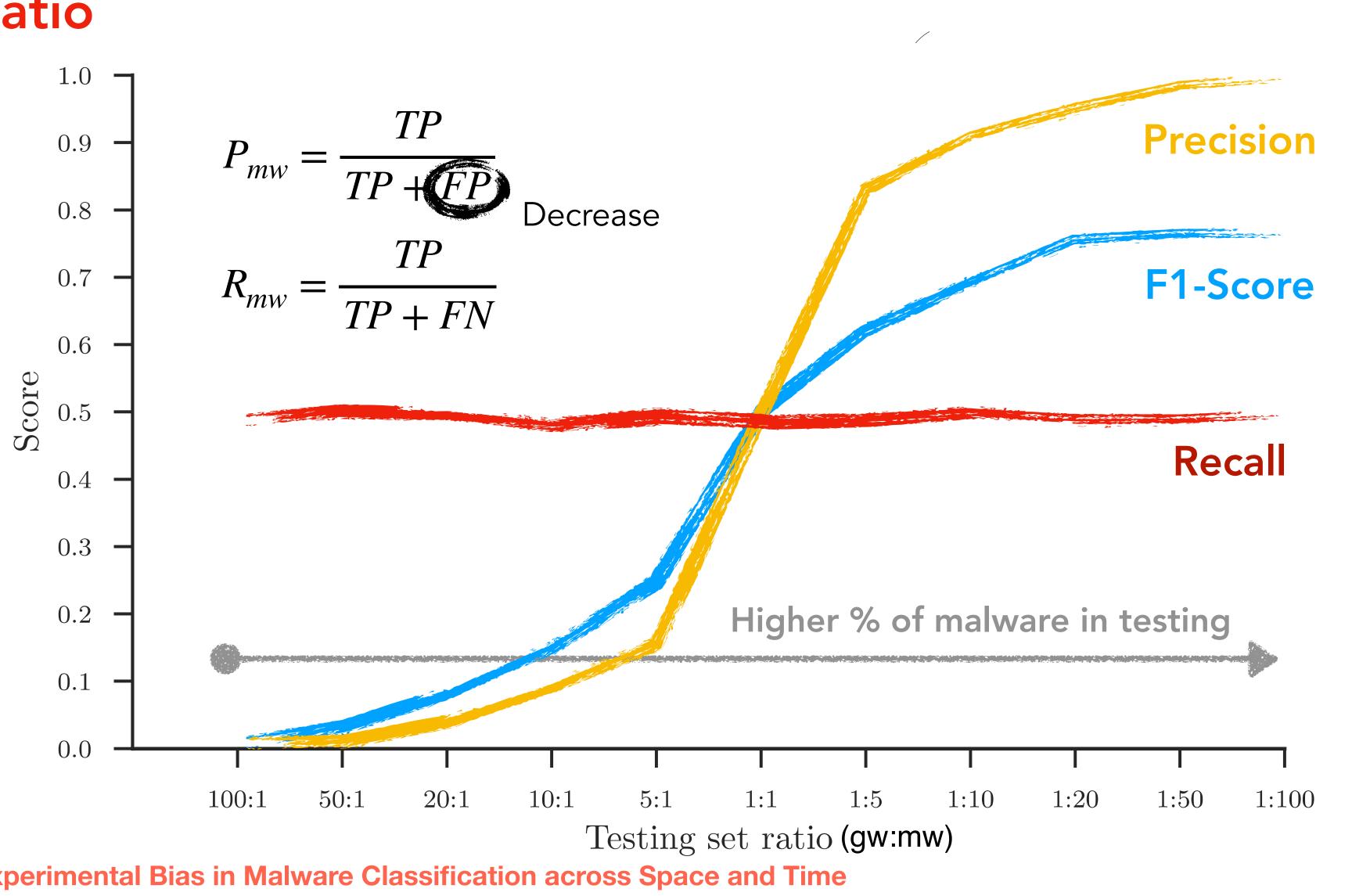
Unrealistic Test Class Ratio

- Training set: Fixed
- **Testing set**: Varying % of mw (by downsampling gw)



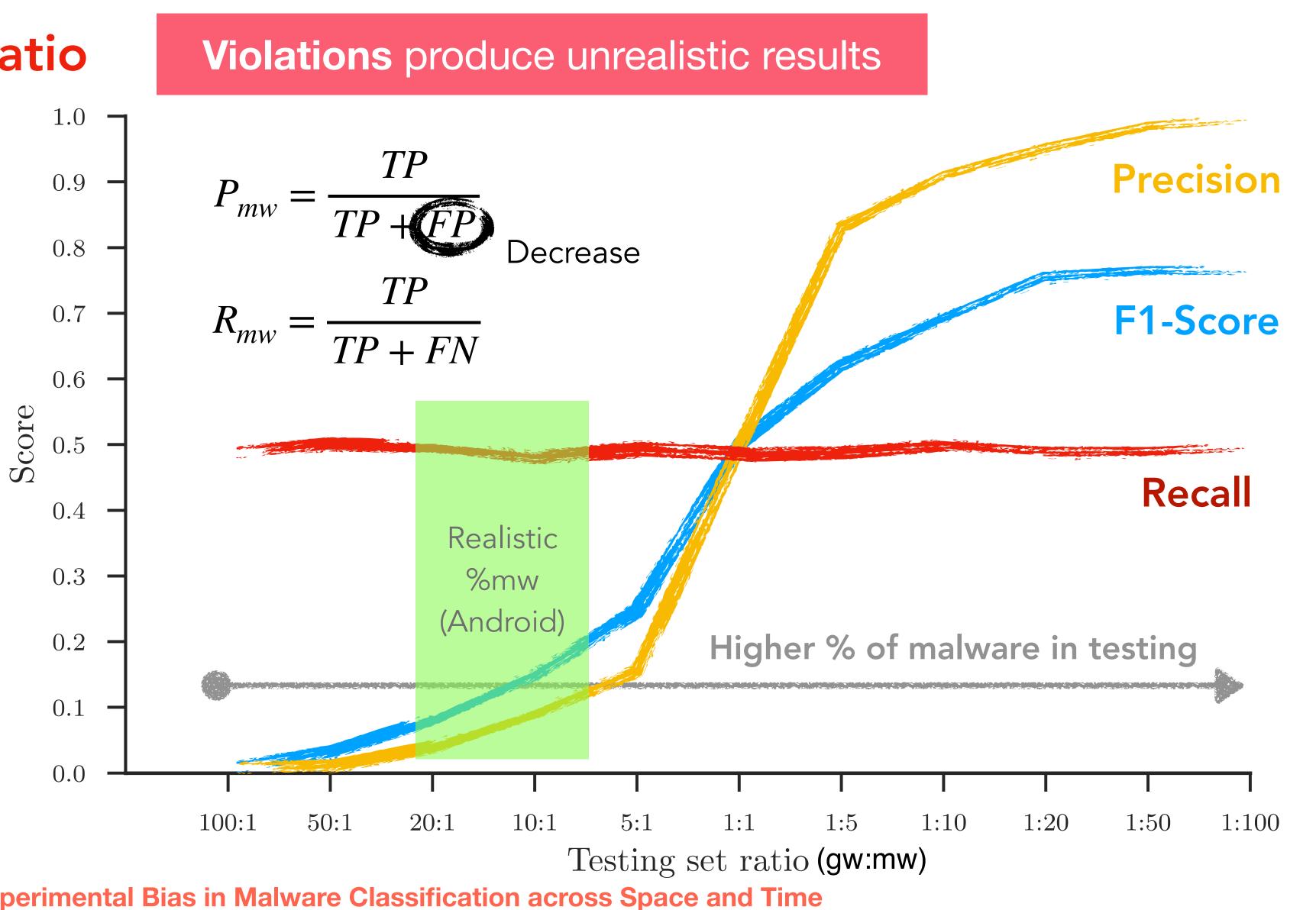
Unrealistic Test Class Ratio

- Training set: Fixed
- **Testing set**: Varying % of mw (by downsampling gw)

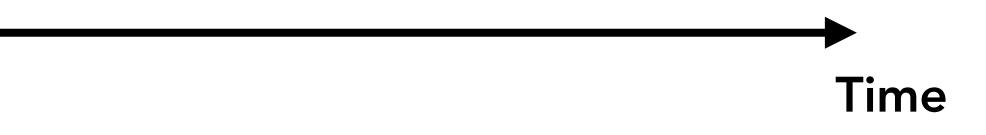


Unrealistic Test Class Ratio

- Training set: Fixed
- **Testing set**: Varying % of mw (by downsampling gw)

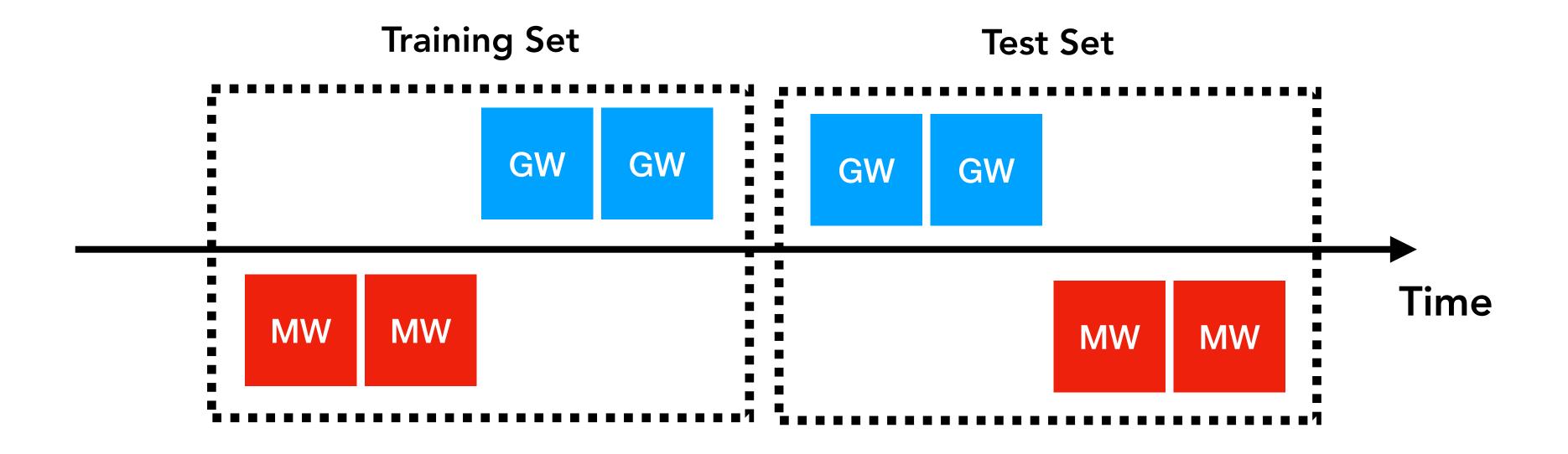


Experimental Constraints



Experimental Constraints

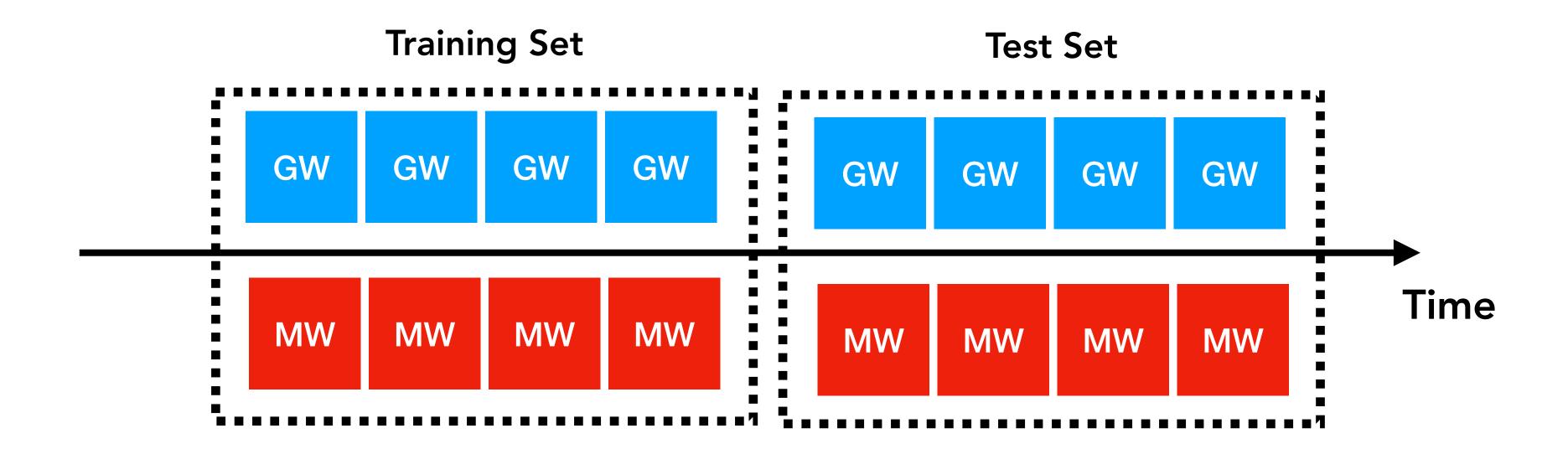
C1 Temporal training consistency



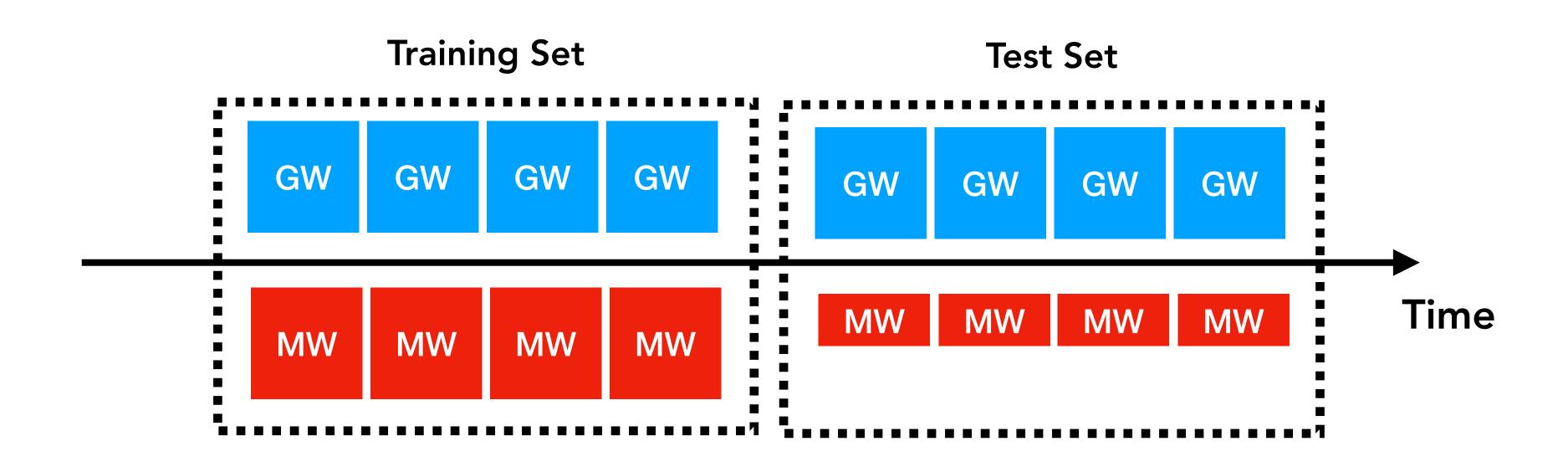
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

time(training) < time(testing)</pre> \rightarrow

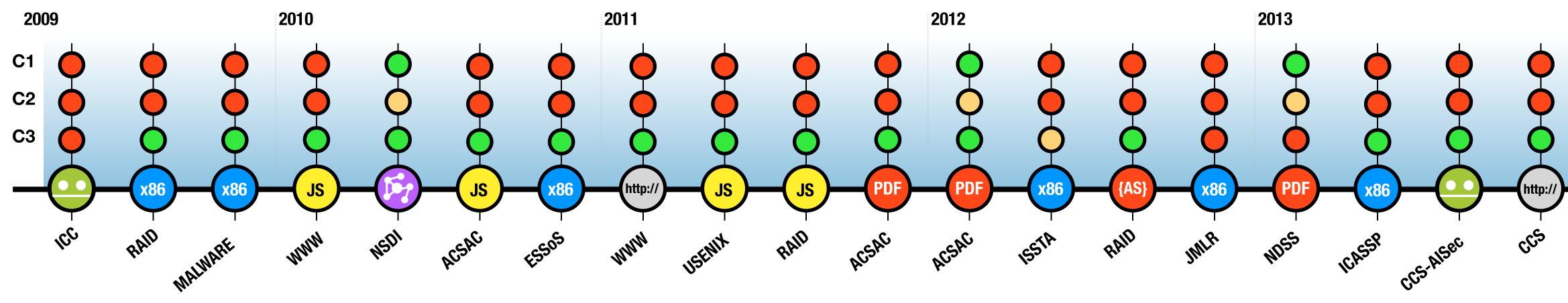
Experimental Constraints

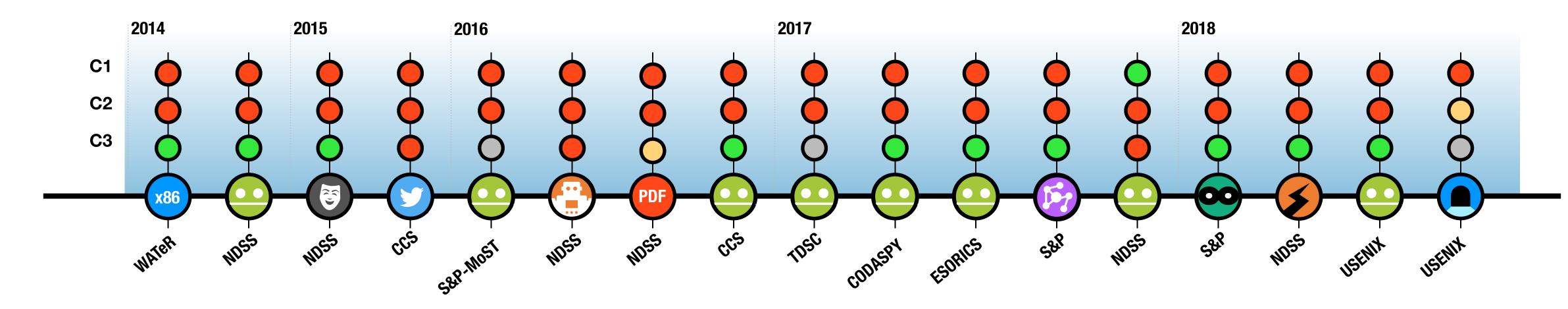


Experimental Constraints



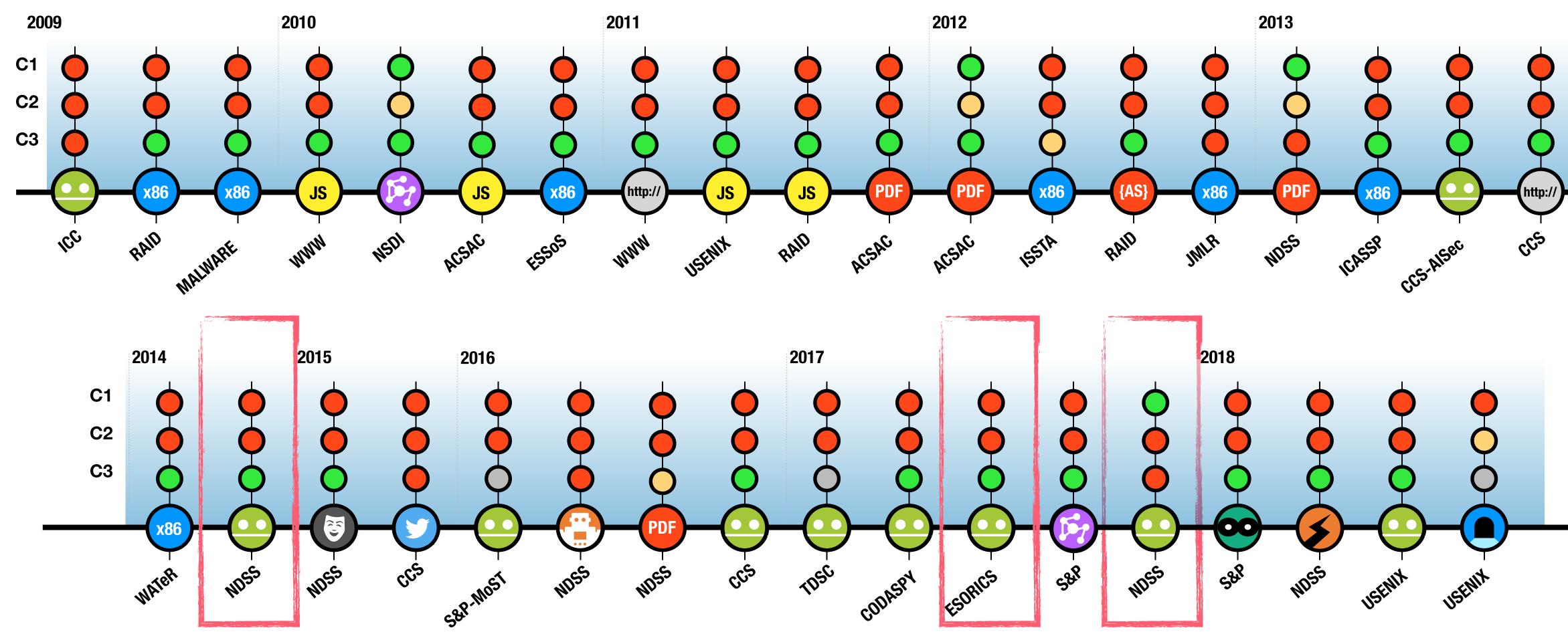
Endemic Problem





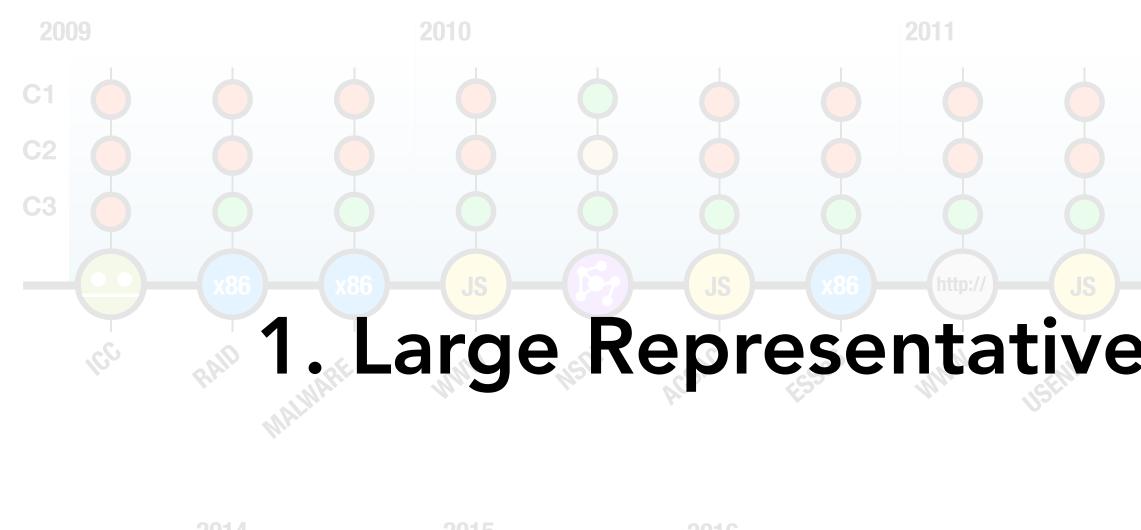
Details: https://s2lab.kcl.ac.uk/projects/tesseract/poster-references.pdf

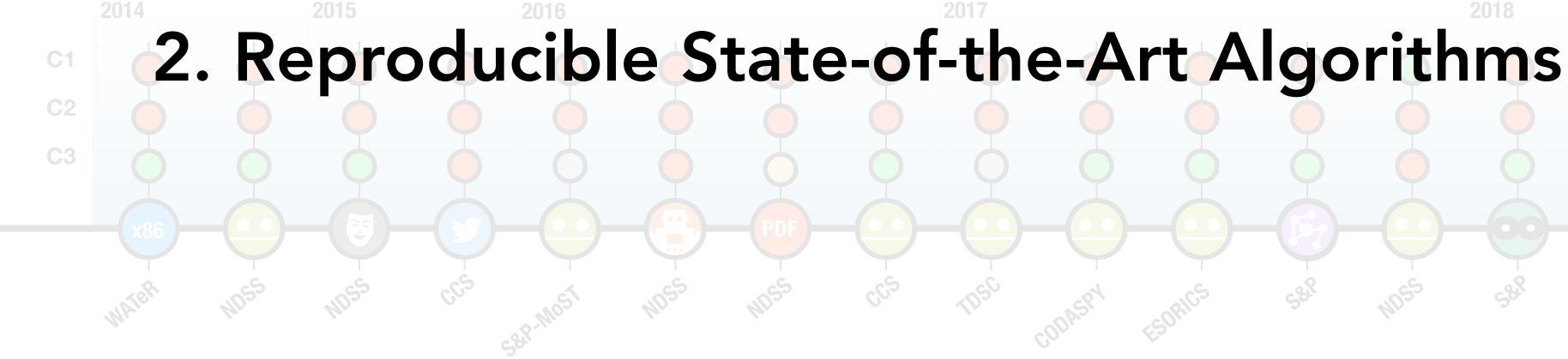
Endemic Problem



Details: https://s2lab.kcl.ac.uk/projects/tesseract/poster-references.pdf

Endemic Problem





[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

1. Large Representative Dataset with Timestamps

2013

Dataset

129,729 Android applications from AndroZoo

• 10% malware

• Covering **3 years** (2014 to 2016)

Experimental Constraints

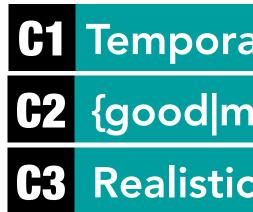


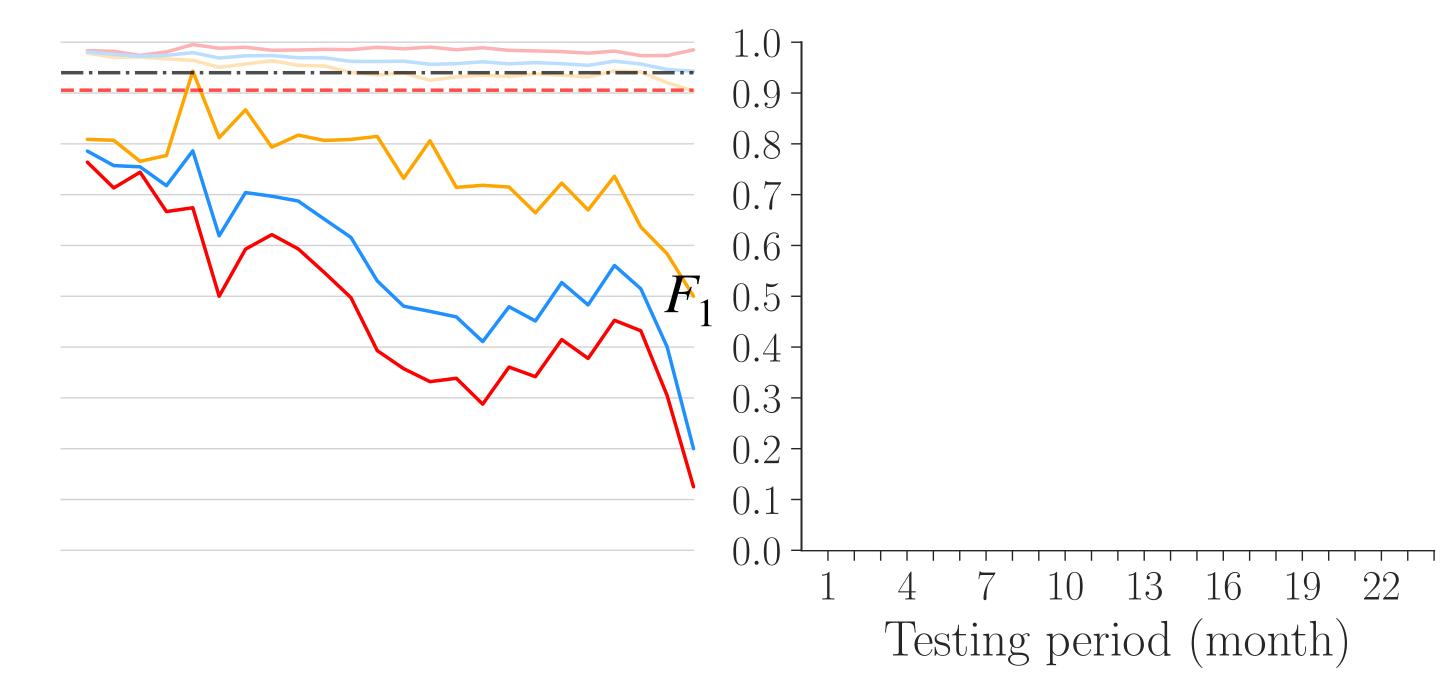
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

C1 Temporal training consistency

G2 {good|mal}ware temporal consistency

C3 Realistic testing classes ratio





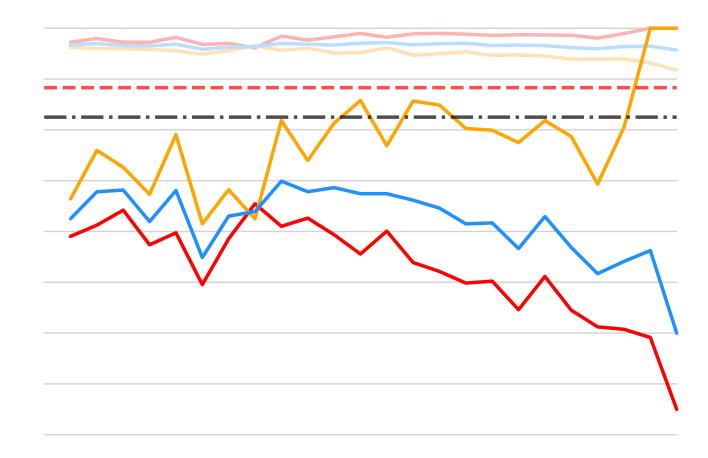
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

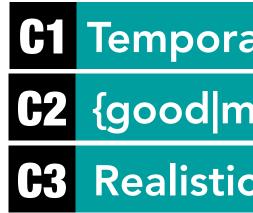
C1 Temporal training consistency

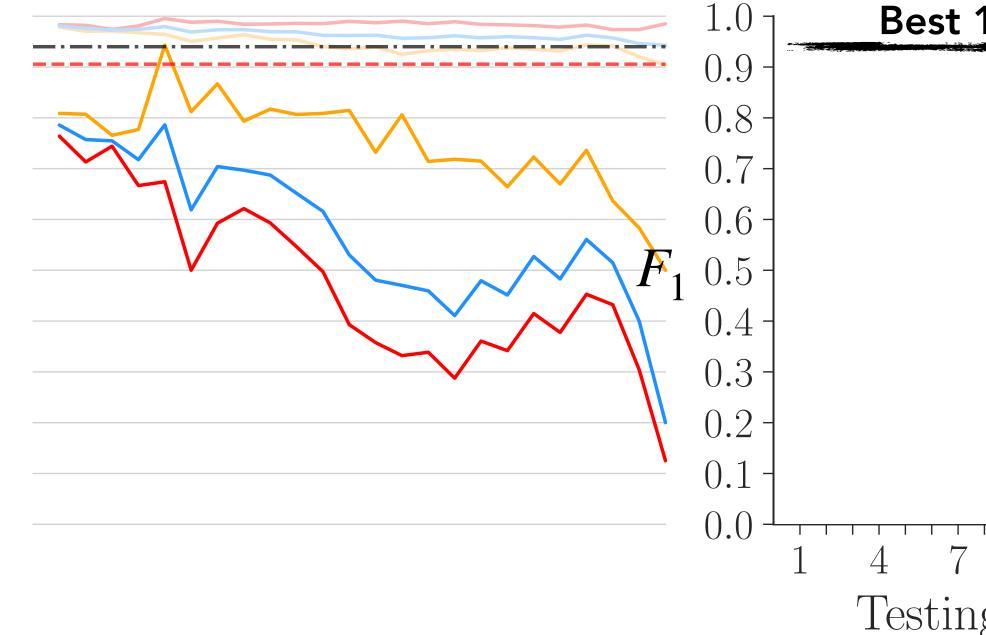
G2 {good|mal}ware temporal consistency

Realistic testing classes ratio

NDSS14







[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

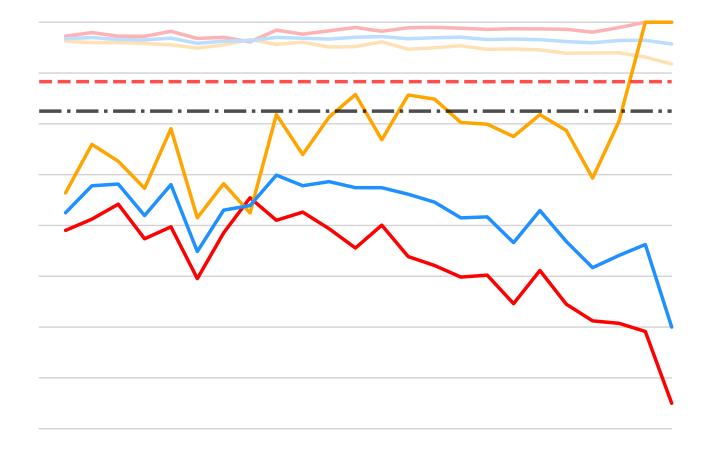
C1 Temporal training consistency

G2 {good|mal}ware temporal consistency

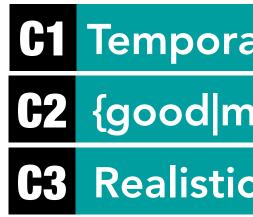
Realistic testing classes ratio

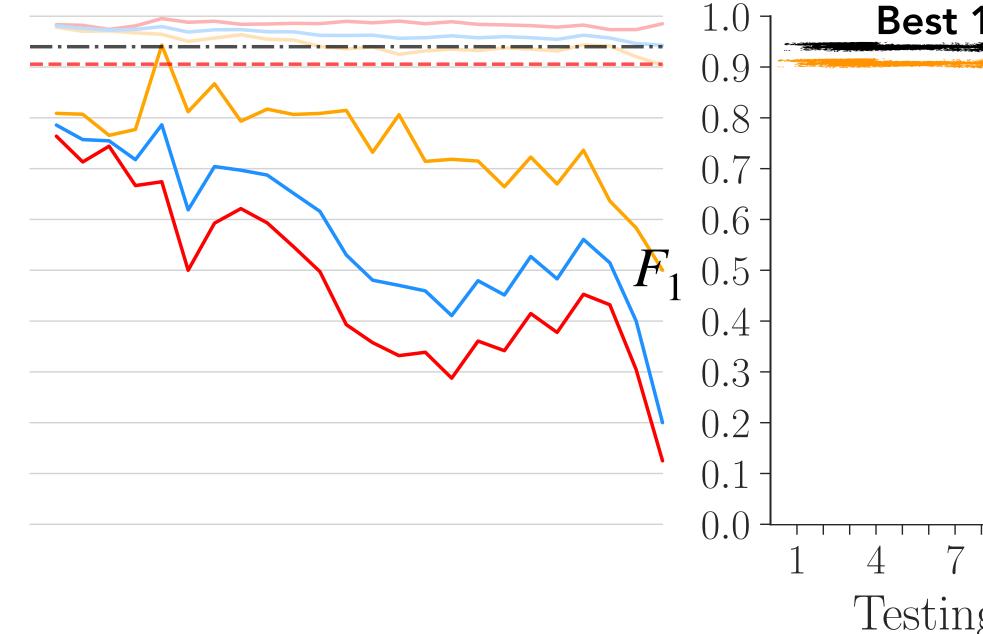
NDSS14

Best 10-fold (original paper)



4 7 10 13 16 19 22 Testing period (month)





[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

C1 Temporal training consistency

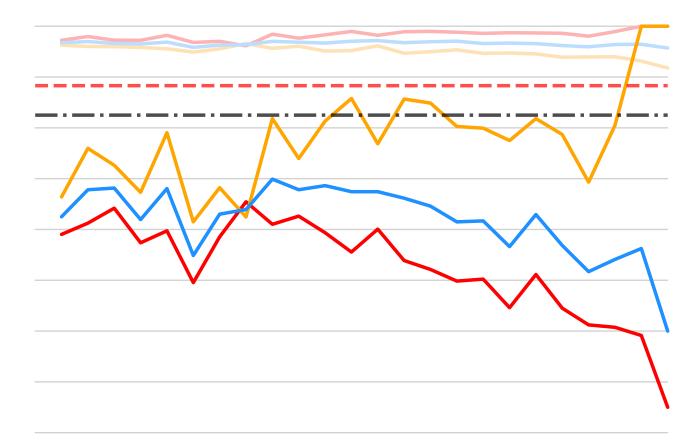
G2 {good|mal}ware temporal consistency

Realistic testing classes ratio

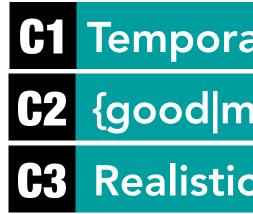
NDSS14

Best 10-fold (original paper)

10-fold (C3 enforced)



4 7 10 13 16 19 22 Testing period (month)





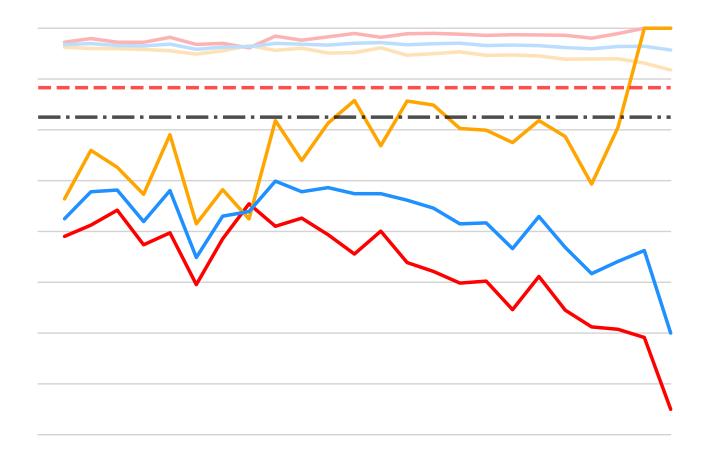
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

C1 Temporal training consistency

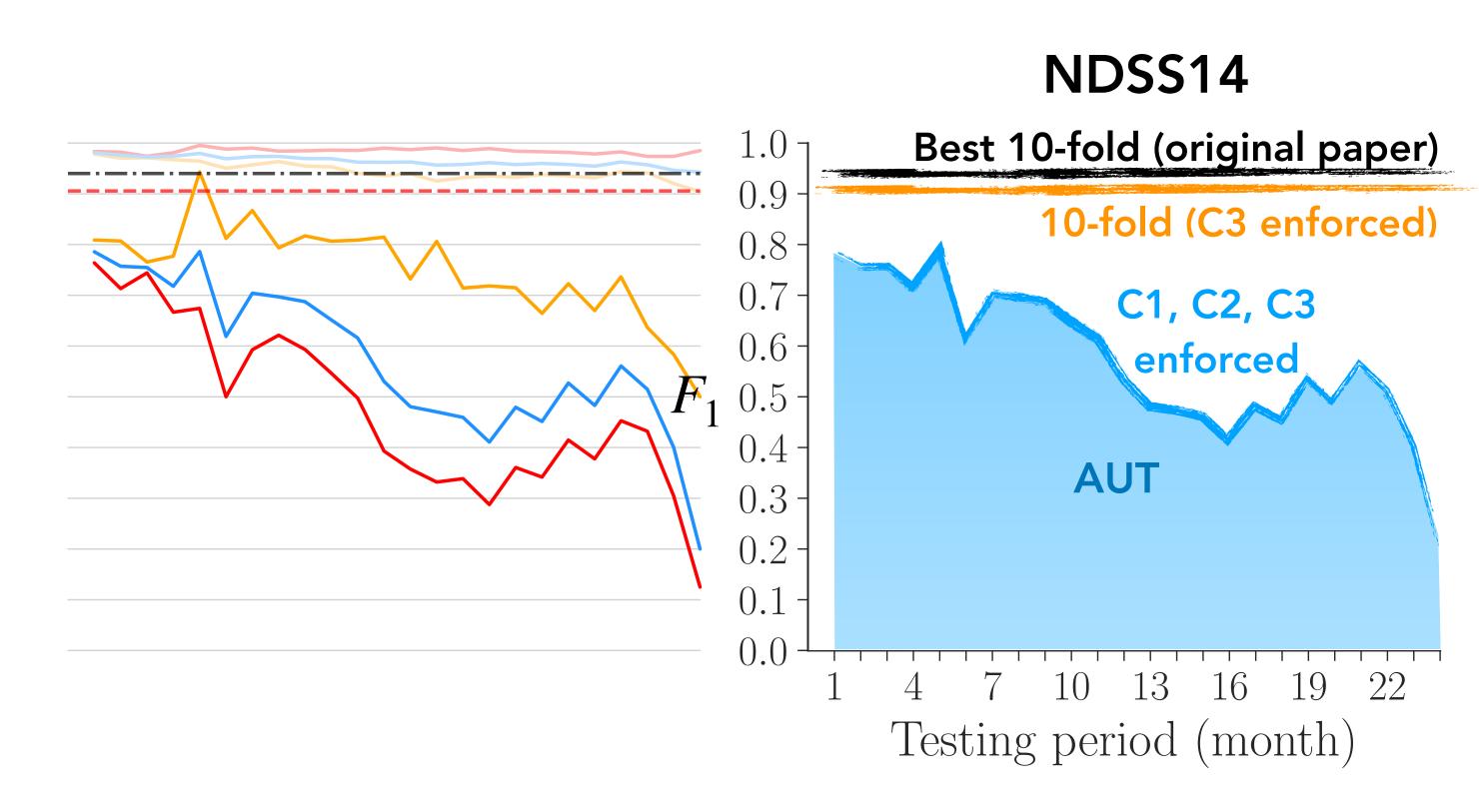
G2 {good|mal}ware temporal consistency

C3 Realistic testing classes ratio

NDSS14 Best 10-fold (original paper) 10-fold (C3 enforced) C1, C2, C3 enforced



22 13 19 16 Testing period (month)

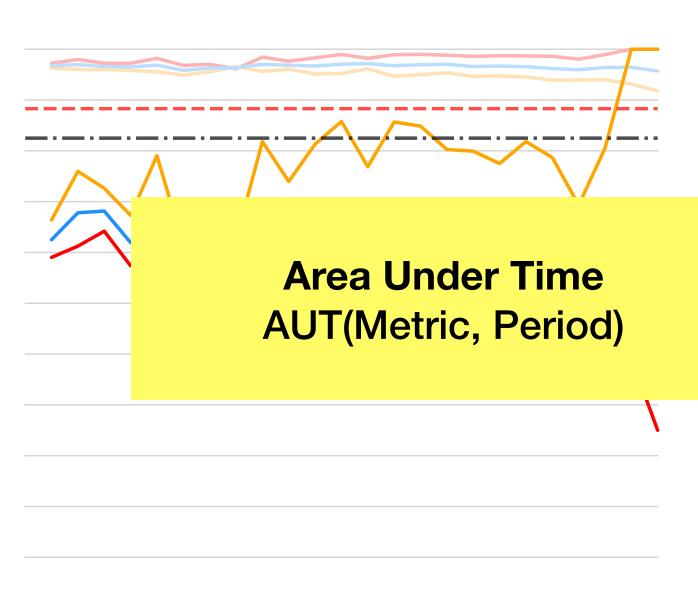


[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

C1 Temporal training consistency

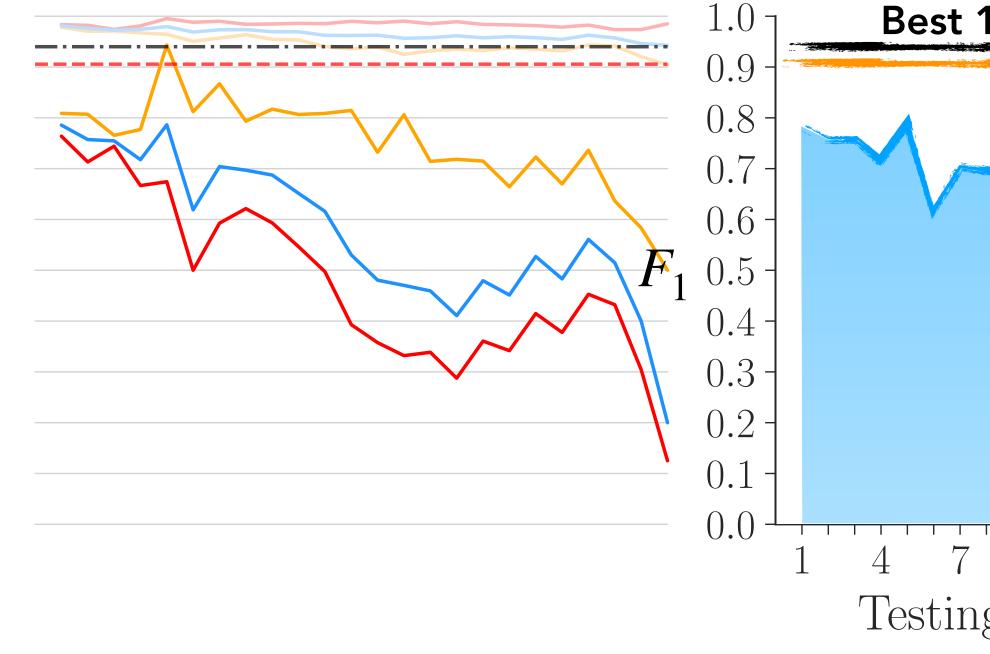
62 {good|mal}ware temporal consistency

C3 Realistic testing classes ratio



 $AUT(F_1, 24m) = 0.58$

59



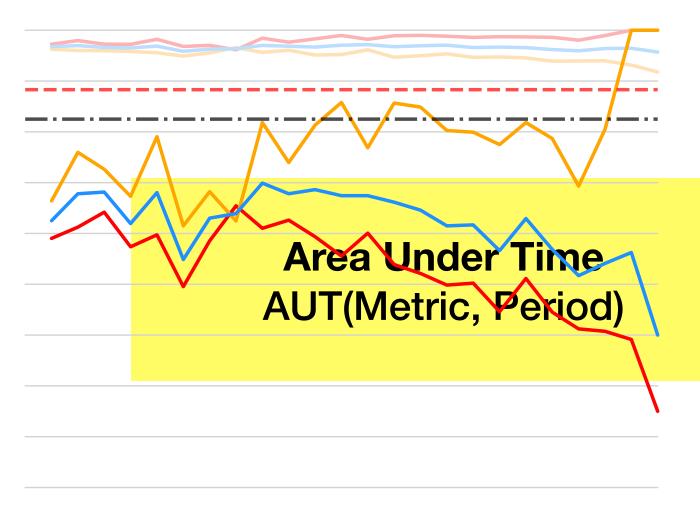
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

C1 Temporal training consistency

62 {good|mal}ware temporal consistency

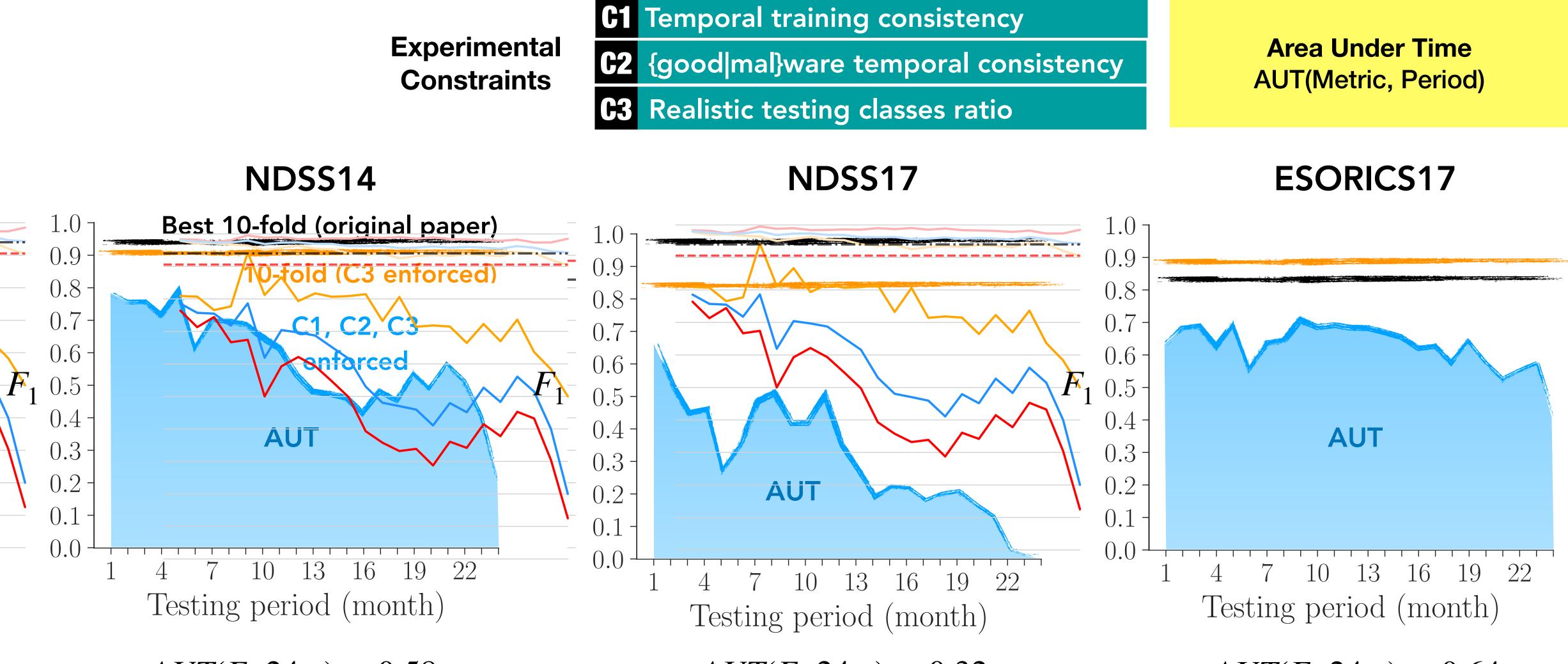
C3 Realistic testing classes ratio

NDSS14 Best 10-fold (original paper) 10-fold (C3 enforced) C1, C2, C3 enforced AUT 22 13 19 16 Testing period (month)



 $AUT(F_1, 24m) = 0.58$

60



 $AUT(F_1, 24m) = 0.58$ $AUT(F_1, 24m) = 0.32$

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time https://s2lab.cs.ucl.ac.uk/projects/tesseract

 $AUT(F_1, 24m) = 0.64$

Realistic Evaluations

- Reveals performance in more realistic setting
- Removes space-time experimental bias
- **Practitioners:** Choose Best Solution
- **Researchers**: Evaluate New Solutions

Realistic Evaluations

- Reveals performance in more realistic setting
- Removes space-time experimental bias
- **Practitioners:** Choose Best Solution
- **Researchers**: Evaluate New Solutions

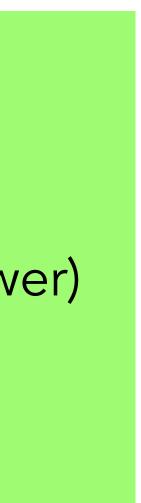
Rejection*

Incremental Retraining

Performance-Cost Trade Offs

- **Detection Performance** (e.g., AUT F₁)
- Labeling Cost for retraining (e.g., manpower)
- Quarantine Cost for rejection (e.g., lowconfidence decisions)

Active Learning



Realistic Evaluations

- Reveals performance in more realistic setting
- Removes space-time experimental bias
- **Practitioners:** Choose Best Solution
- **Researchers**: Evaluate New Solutions

Incremental Retraining **Rejection***

As well as measuring the overall effect of drift we can **identify** specific aspects of the drift and **reject** objects that are likely to be misclassified.

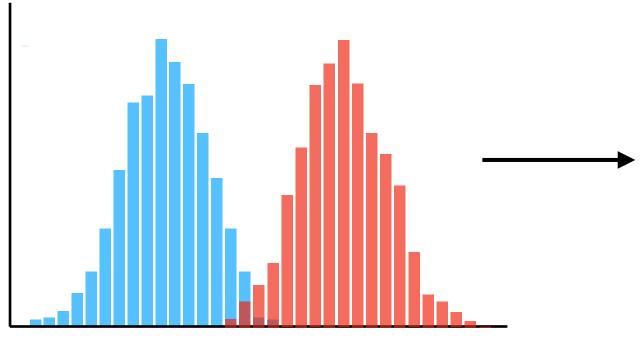
* [USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models * [IEEE S&P 2022] Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift

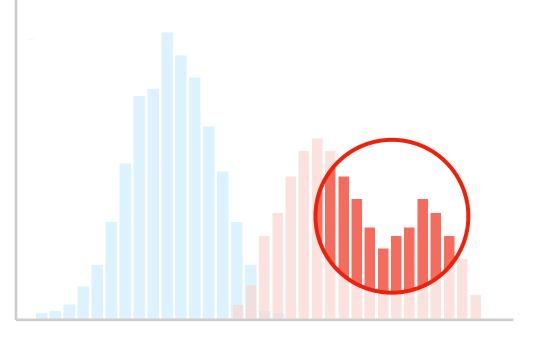
https://s2lab.cs.ucl.ac.uk/projects/transcend

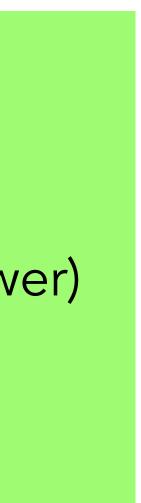
Performance-Cost Trade Offs

- **Detection Performance** (e.g., AUT F₁)
- Labeling Cost for retraining (e.g., manpower)
- Quarantine Cost for rejection (e.g., lowconfidence decisions)

Active Learning



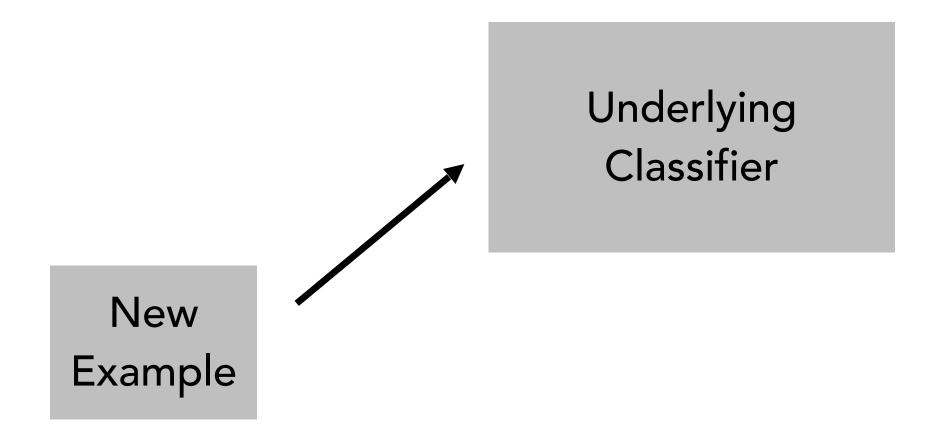




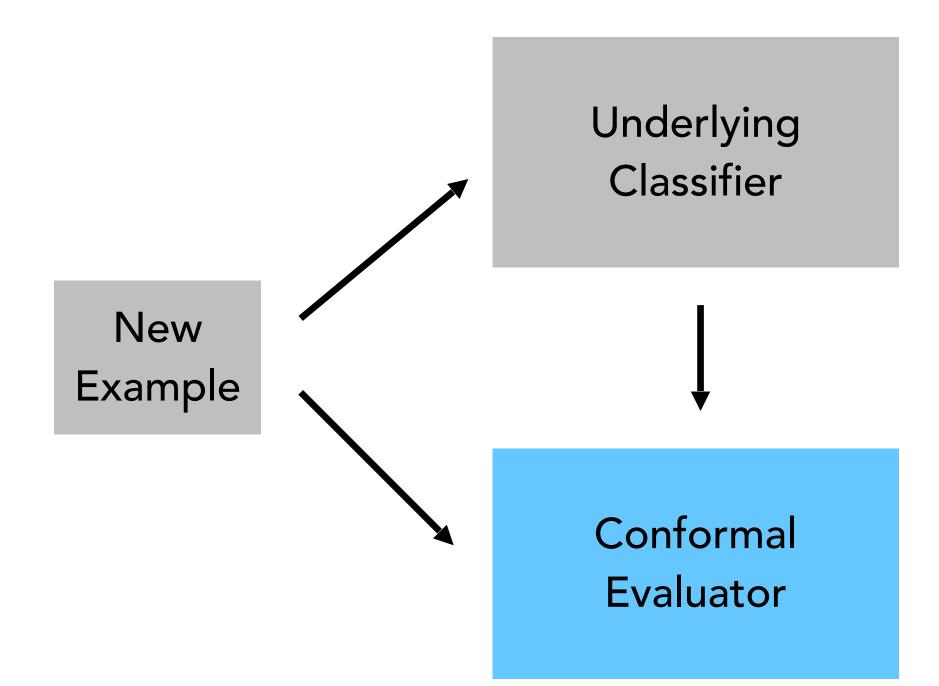
Revisiting Classification in the Presence of Concept Drift

Revisiting Classification in the Presence of Concept Drift

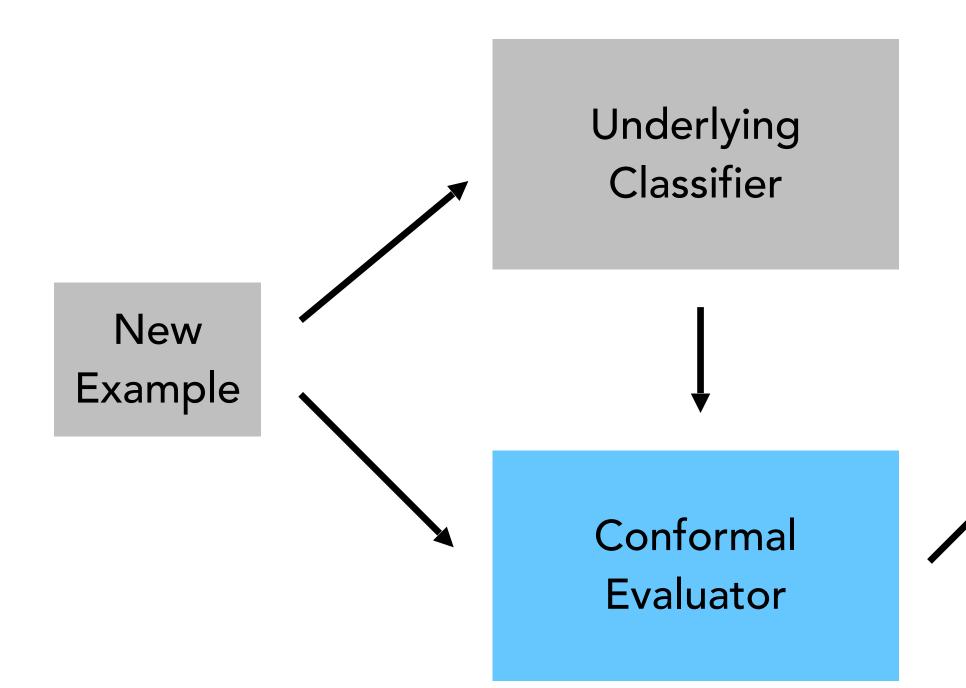
Covariate Shift: Change in feature distribution $P(x \in X)$ Prior-probability Shift: Change in class base rate $P(y \in Y)$ Concept Drift: Change in ground truth definition $P(y \in Y | x \in X)$



[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models https://s2lab.cs.ucl.ac.uk/projects/transcend/

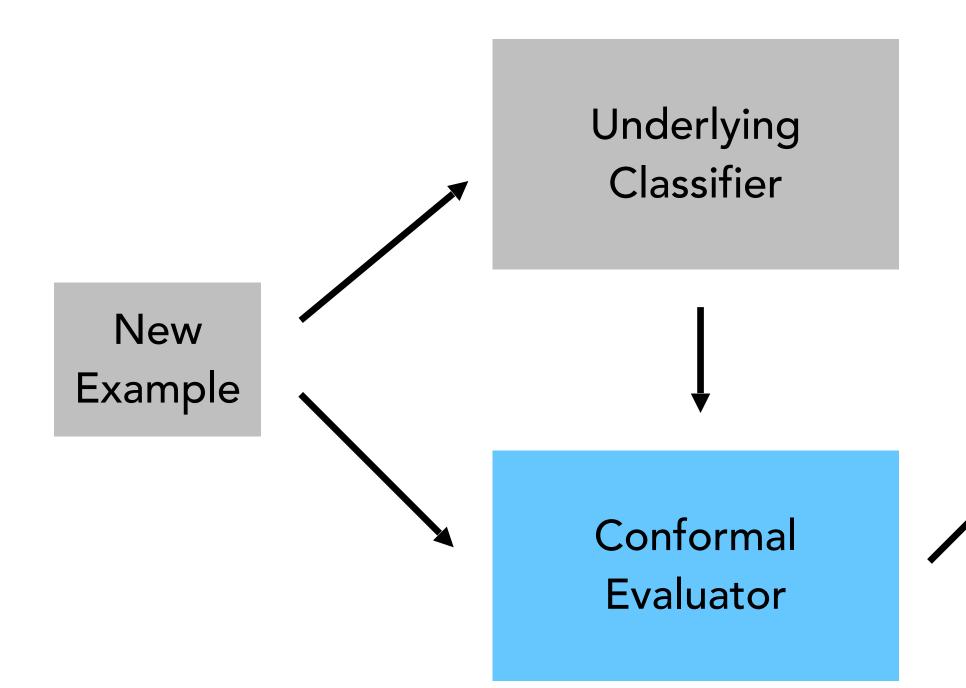


[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models https://s2lab.cs.ucl.ac.uk/projects/transcend/

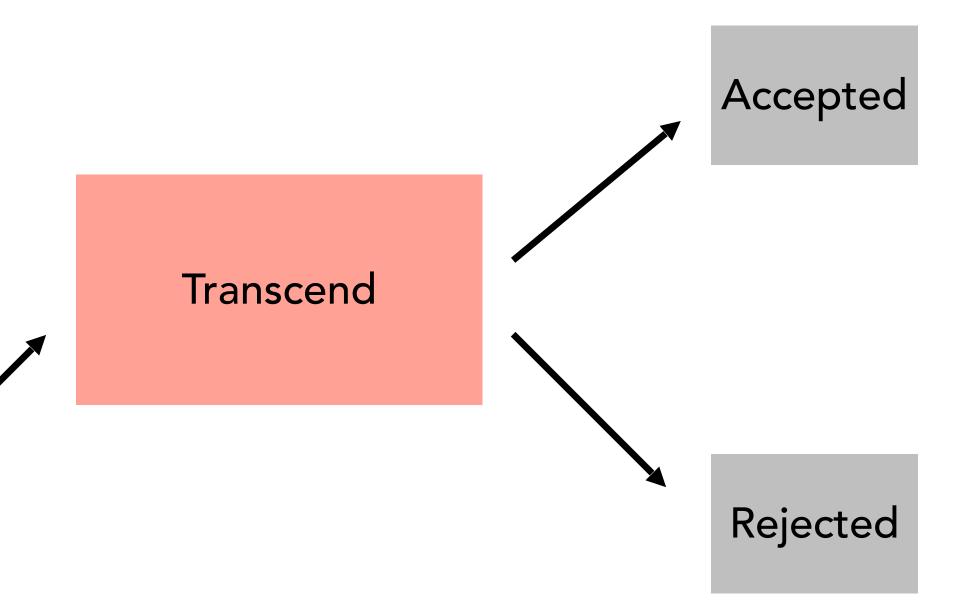


[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models https://s2lab.cs.ucl.ac.uk/projects/transcend/

Transcend



[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models https://s2lab.cs.ucl.ac.uk/projects/transcend/



Theoretical Understanding

- Provide missing link with Conformal Prediction Theory
- Motivate the effectiveness of Conformal Evaluation

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift https://s2lab.cs.ucl.ac.uk/projects/transcend/

rediction Theory nal Evaluation

Theoretical Understanding

- Provide missing link with Conformal Prediction Theory
- Motivate the effectiveness of Conformal Evaluation

Computational Optimizations

- New, sound and more flexible Conformal Evaluators
- Faster thresholding

Theoretical Understanding

- Provide missing link with Conformal Prediction Theory
- Motivate the effectiveness of Conformal Evaluation

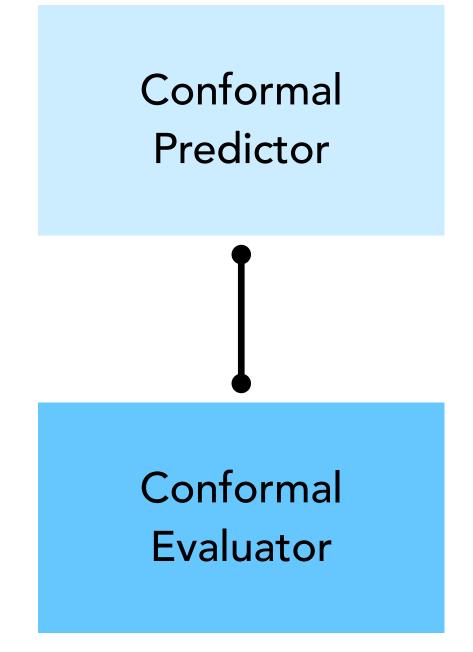
Computational Optimizations

- New, sound and more flexible Conformal Evaluators
- Faster thresholding

Extensive Evaluation

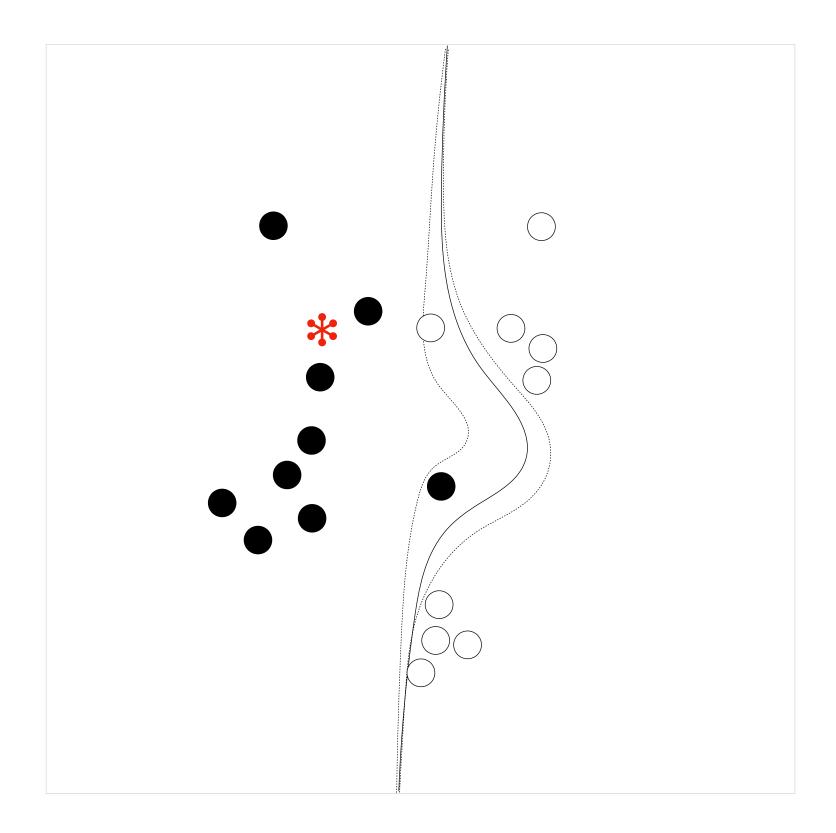
- Android, Windows PE and PDF malware
- Different classifiers (SVM, RF, GBDT)

Conformal Prediction and Evaluation

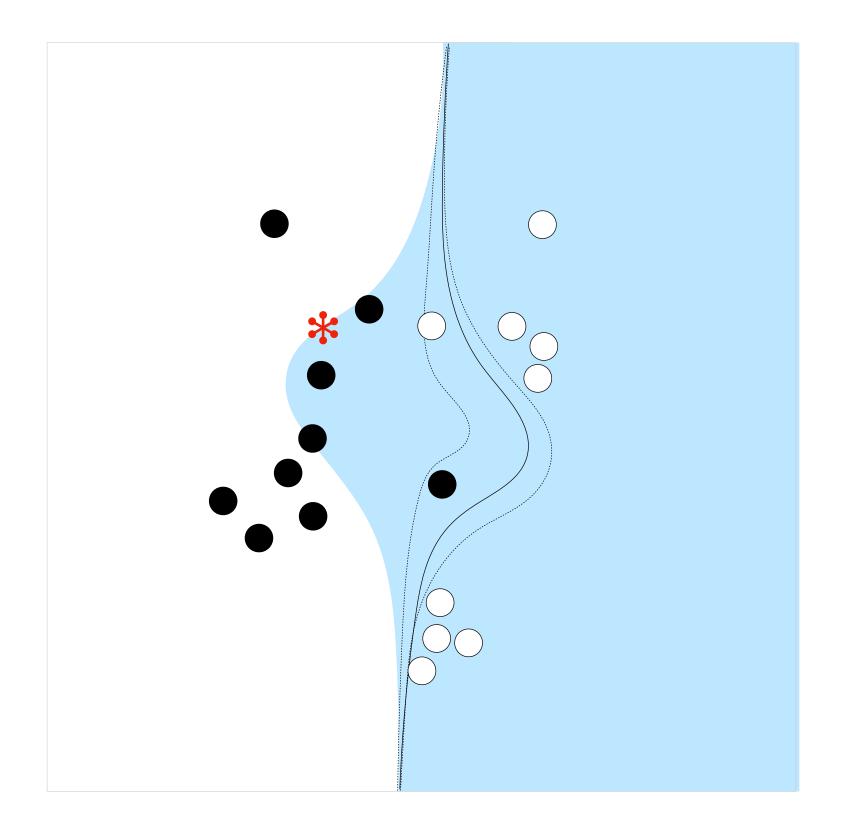


- CP theory lays foundation for CE
- CPs outputs prediction sets with guaranteed confidence 1 ϵ
- CPs rely on two assumptions:
 - Exchangeability: Generalization of i.i.d.
 - Closed-world: Fixed label space

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift https://s2lab.cs.ucl.ac.uk/projects/transcend/

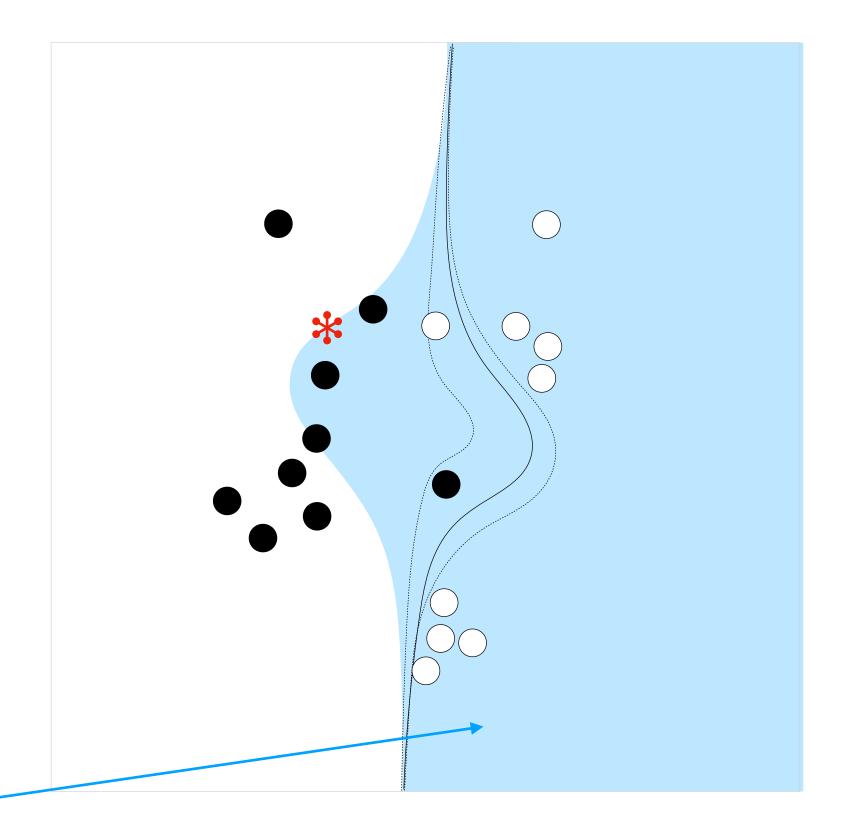


[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift https://s2lab.cs.ucl.ac.uk/projects/transcend/



More dissimilar region

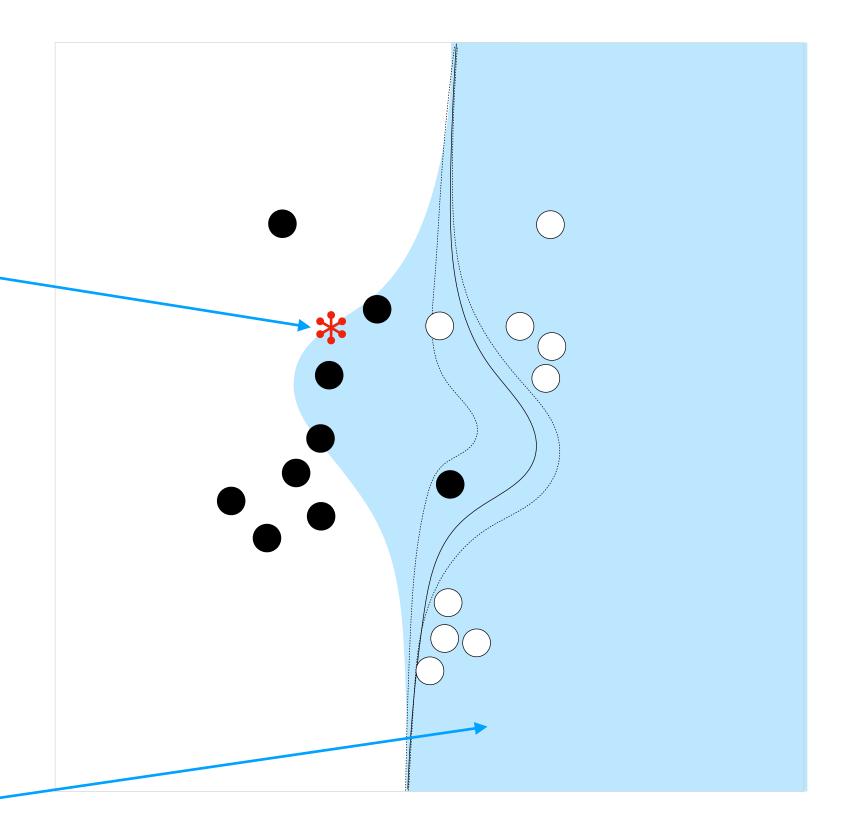
[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift https://s2lab.cs.ucl.ac.uk/projects/transcend/

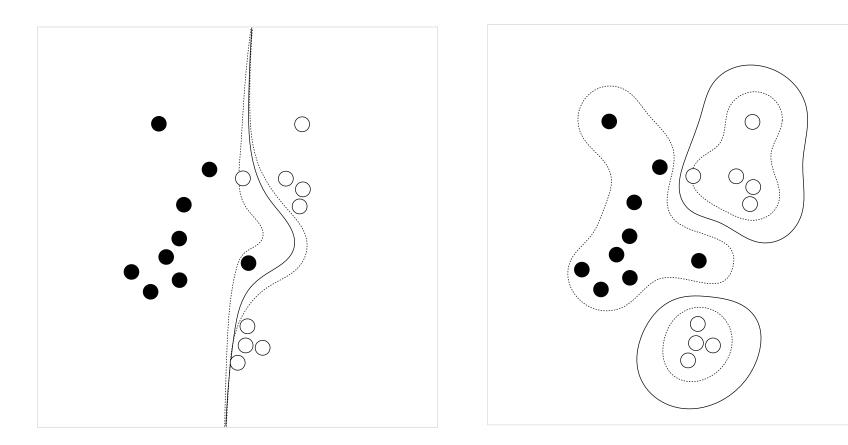


Test point

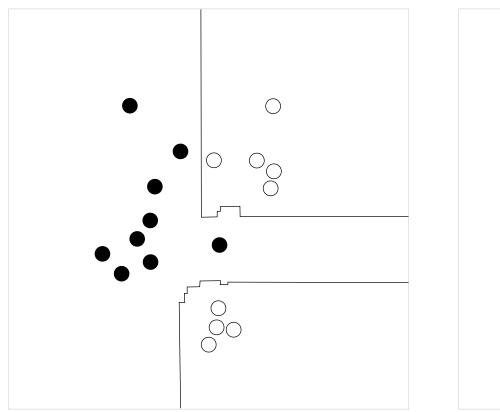
More dissimilar region

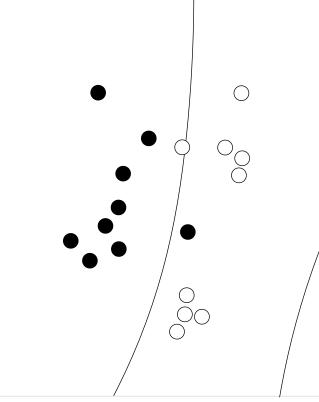
[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift https://s2lab.cs.ucl.ac.uk/projects/transcend/





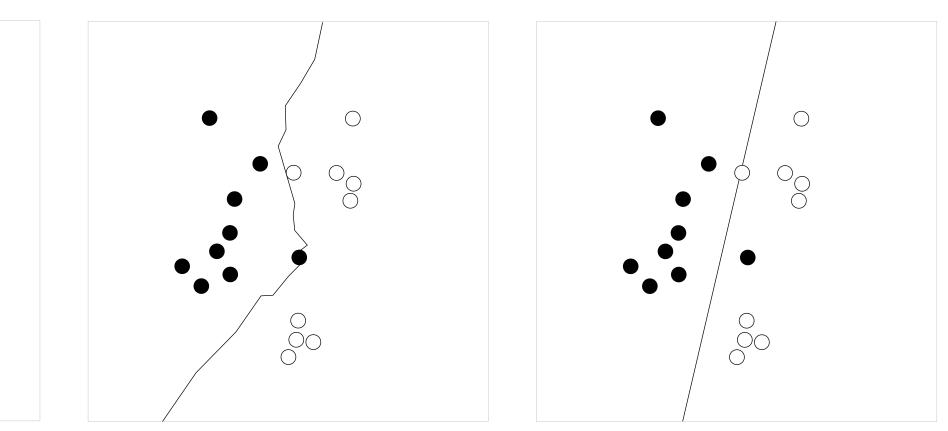
SVM Polynomial





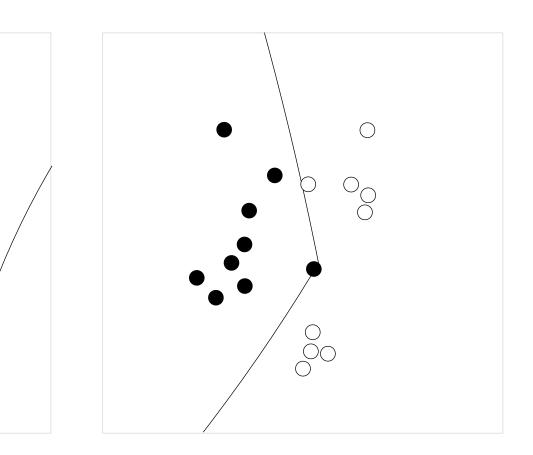
Random Forests

QDA

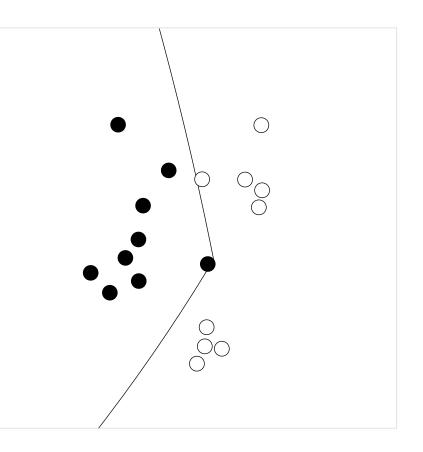


3NN

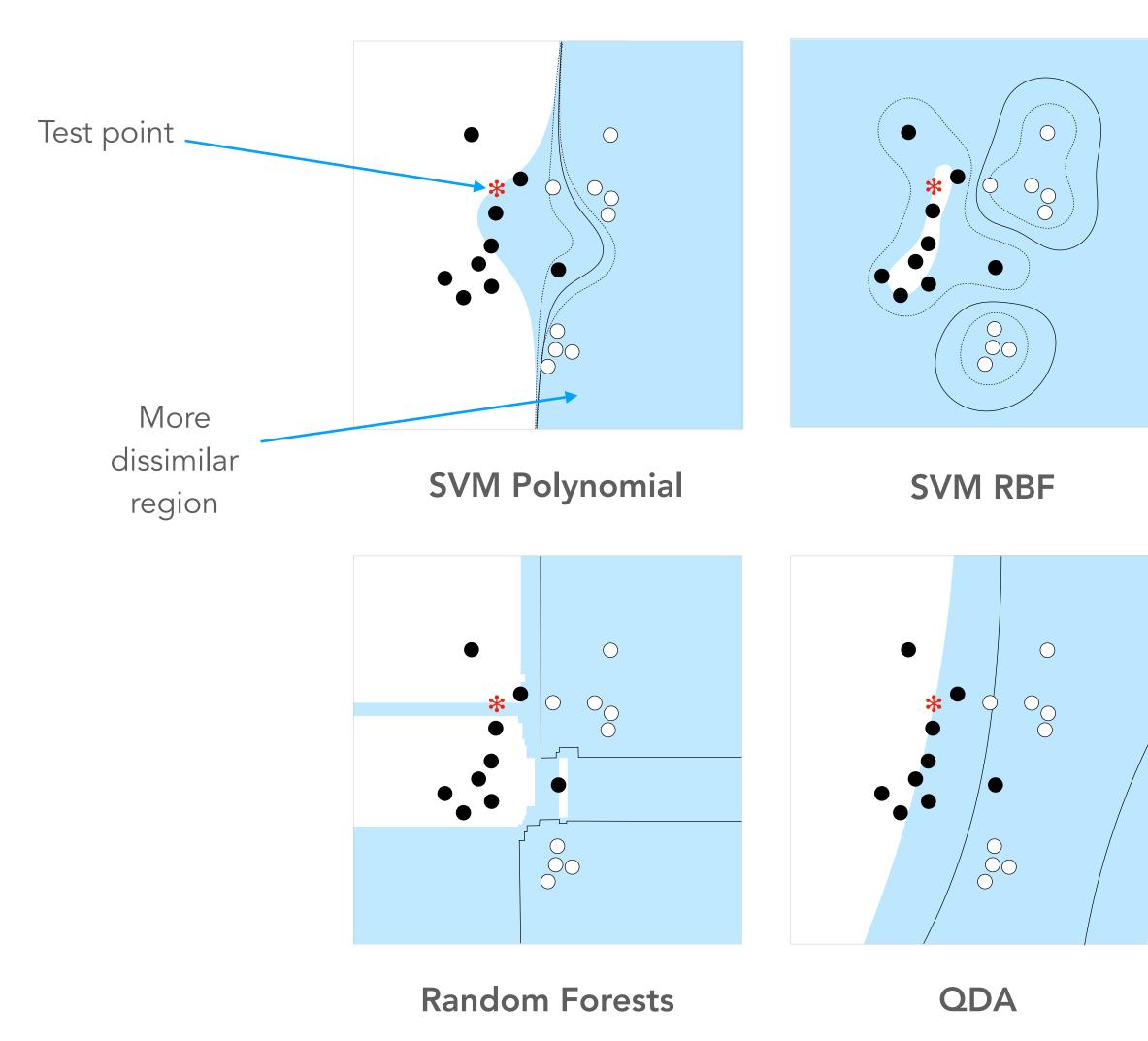
Nearest Centroid

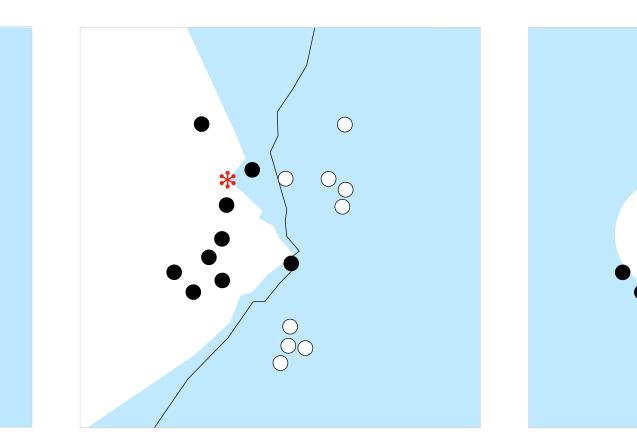


Neural Network (output activation)



Neural Network (last hidden layer w/ SVM RBF)

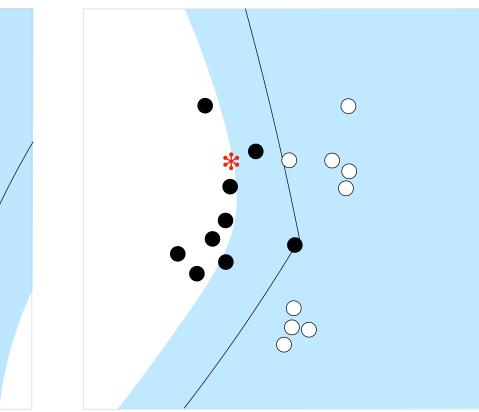




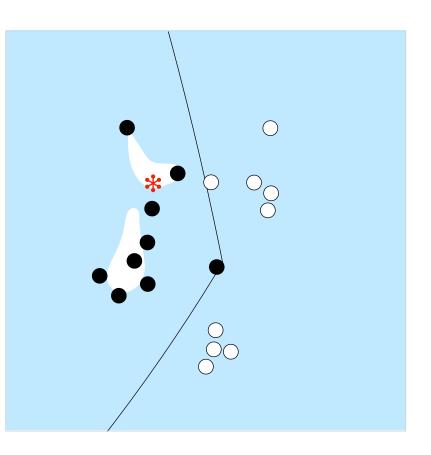
3NN

Nearest Centroid

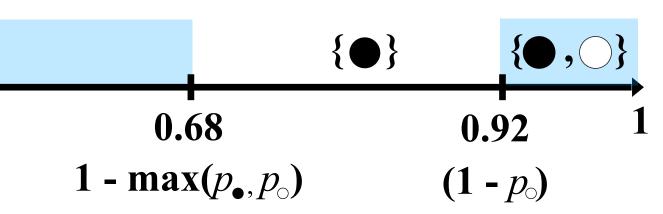
 \bigcirc

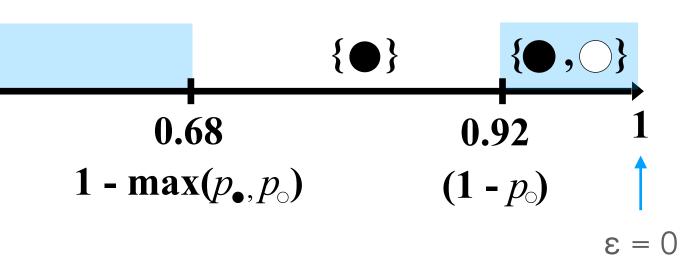


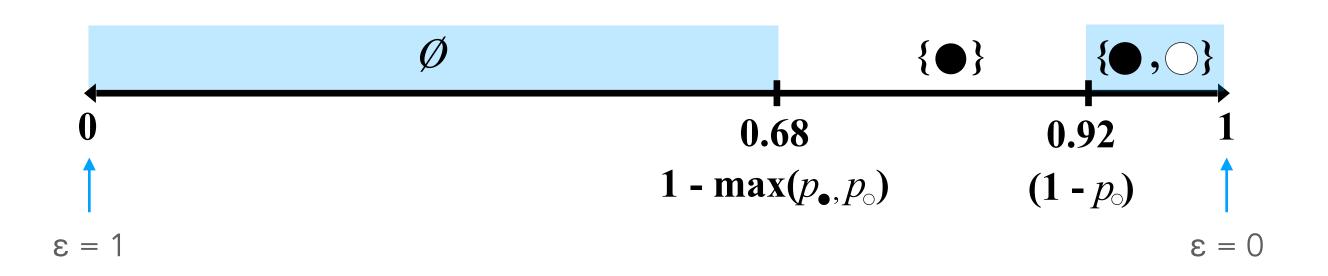
Neural Network (output activation)

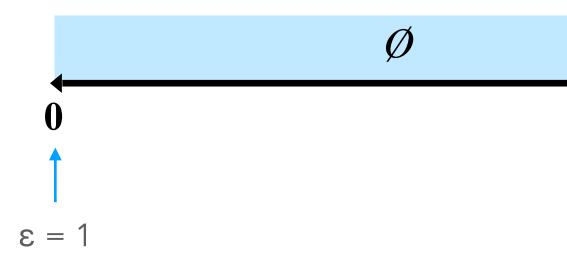


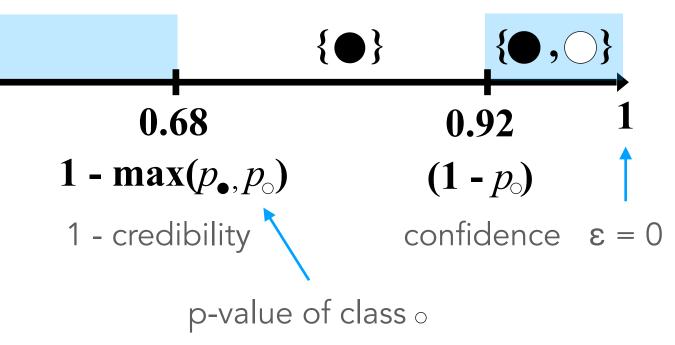
Neural Network (last hidden layer w/ SVM RBF)



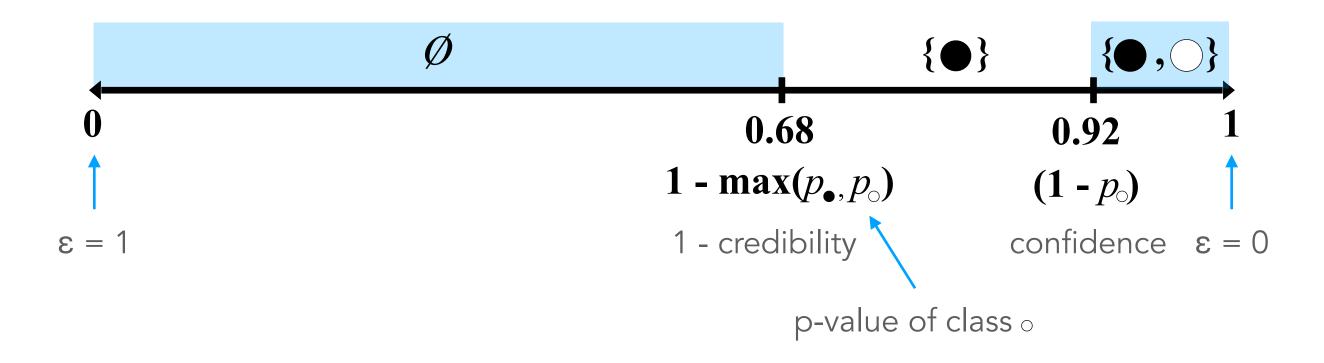




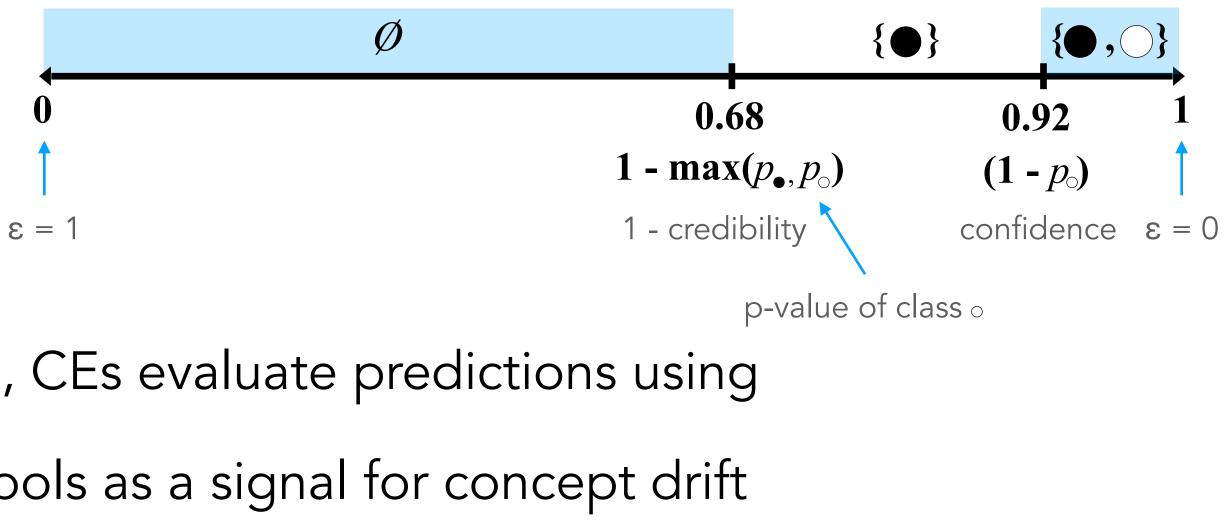




- Low credibility means high probability of an impossible result
- This means assumptions could have been violated drift!



- Low credibility means high probability of an impossible result
- This means assumptions could have been violated drift!



 Whereas CPs predict, CEs evaluate predictions using the same statistical tools as a signal for concept drift

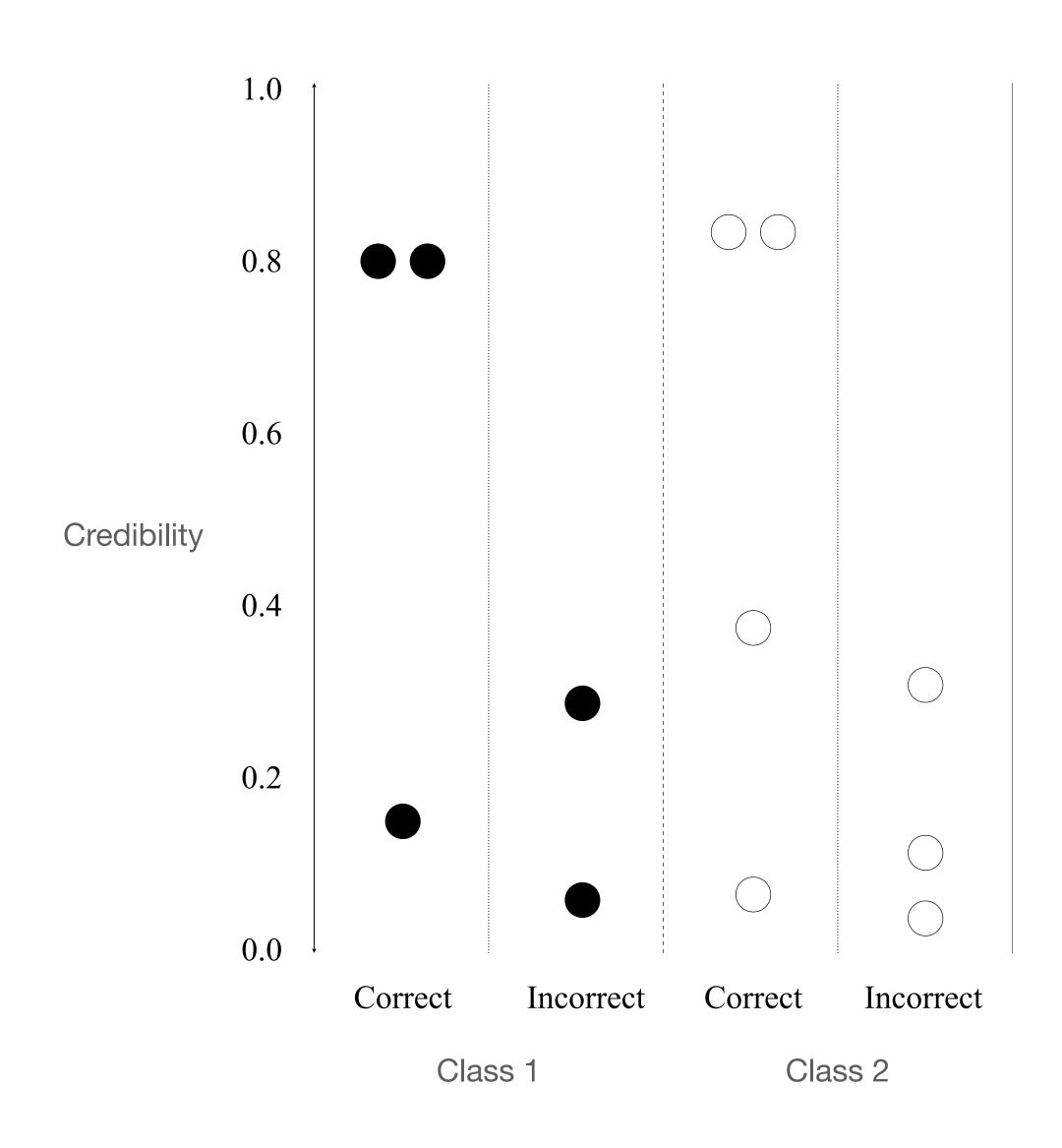
Transcend Calibration

Credibility	1.0				
	0.8				
	0.6				
	0.4				
	0.2				
	0.0	Correct	Incorrect	Correct	Incorrect
		Class 1		Class 2	

• How much drift is too much?

- Produce a threshold for each class
- Optimize cost vs performance on training and calibration sets
- Maximise separation between credibility of correct and incorrect decisions

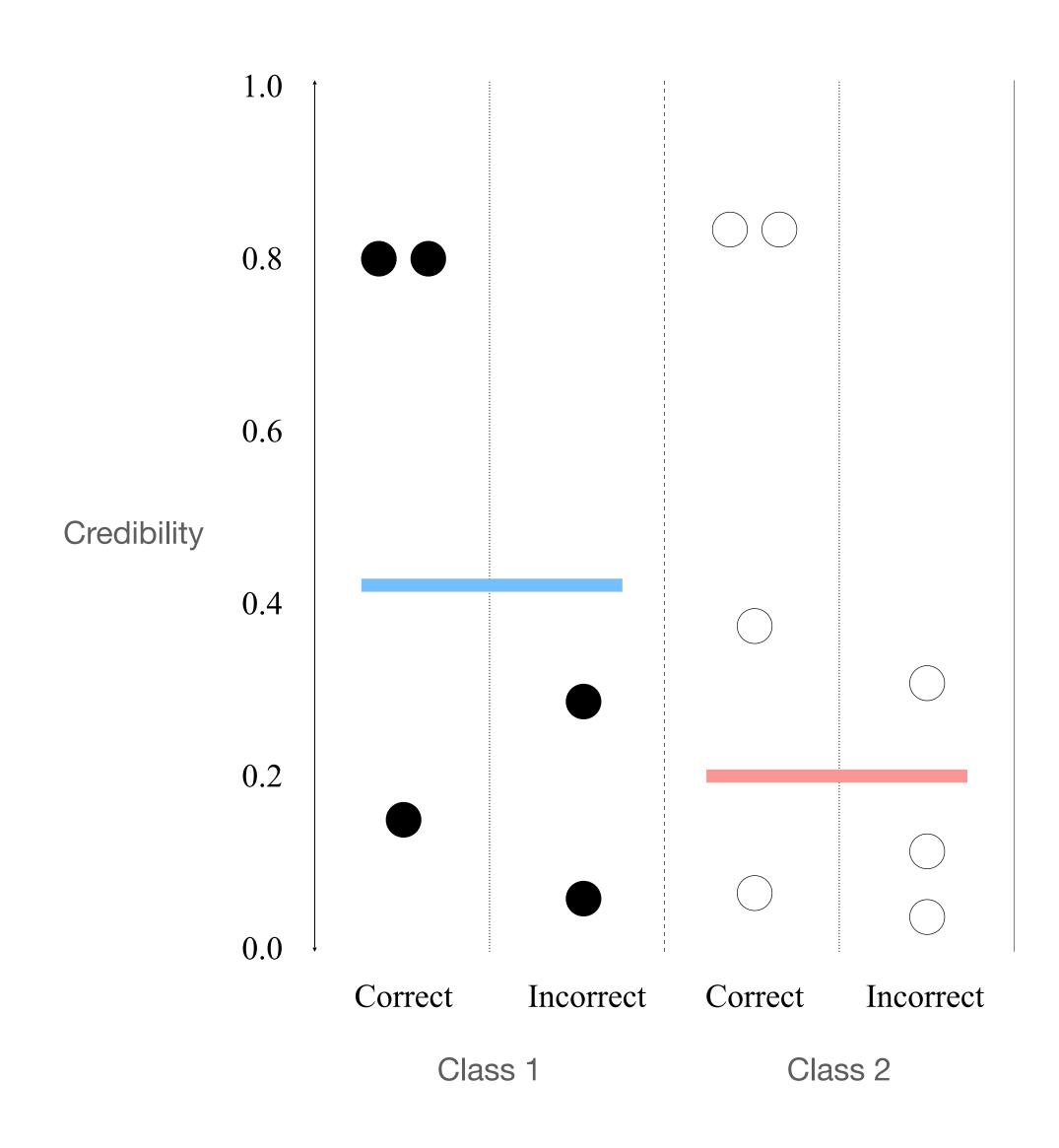
Transcend Calibration



• How much drift is too much?

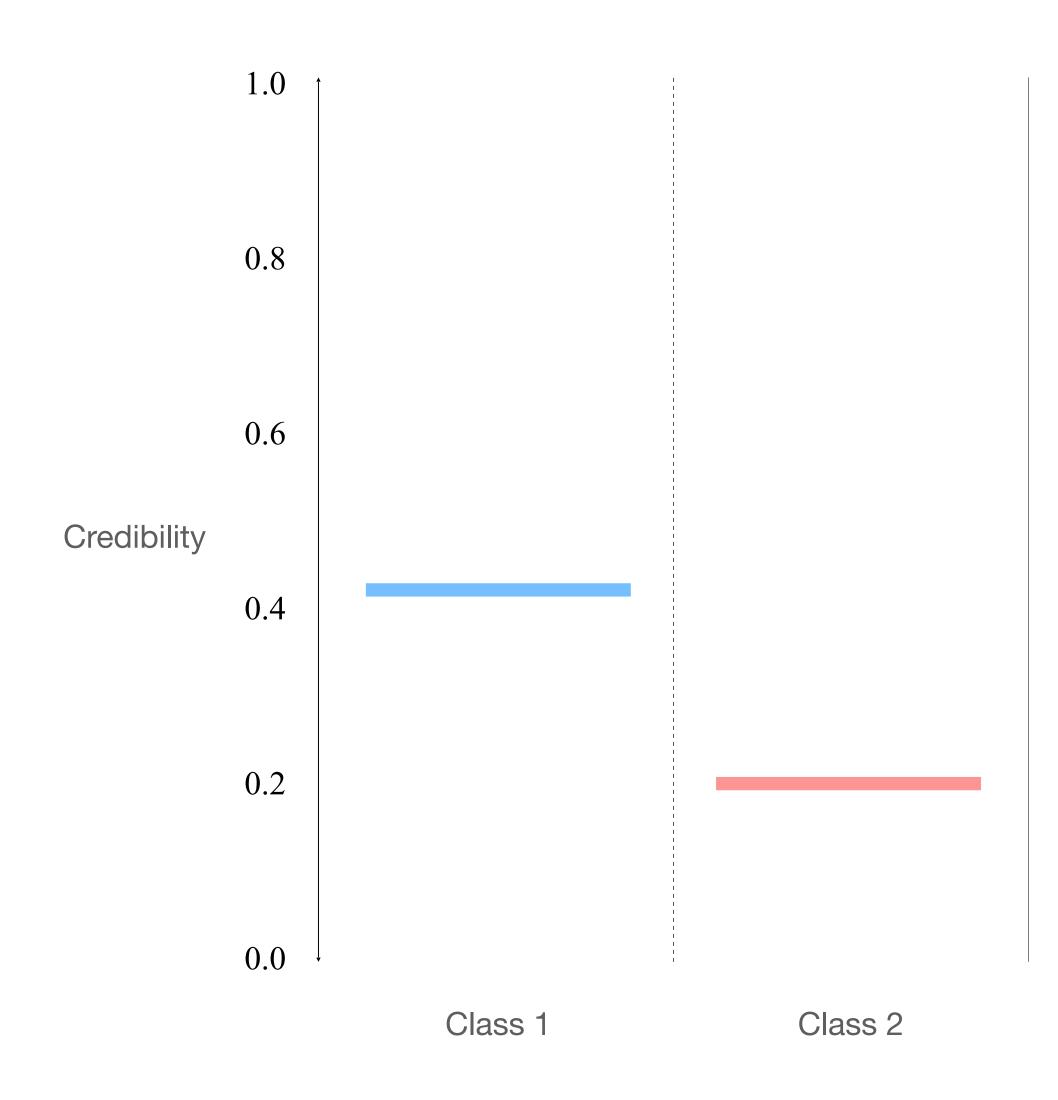
- Produce a threshold for each class
- Optimize cost vs performance on training and calibration sets
- Maximise separation between credibility of correct and incorrect decisions

Transcend Calibration

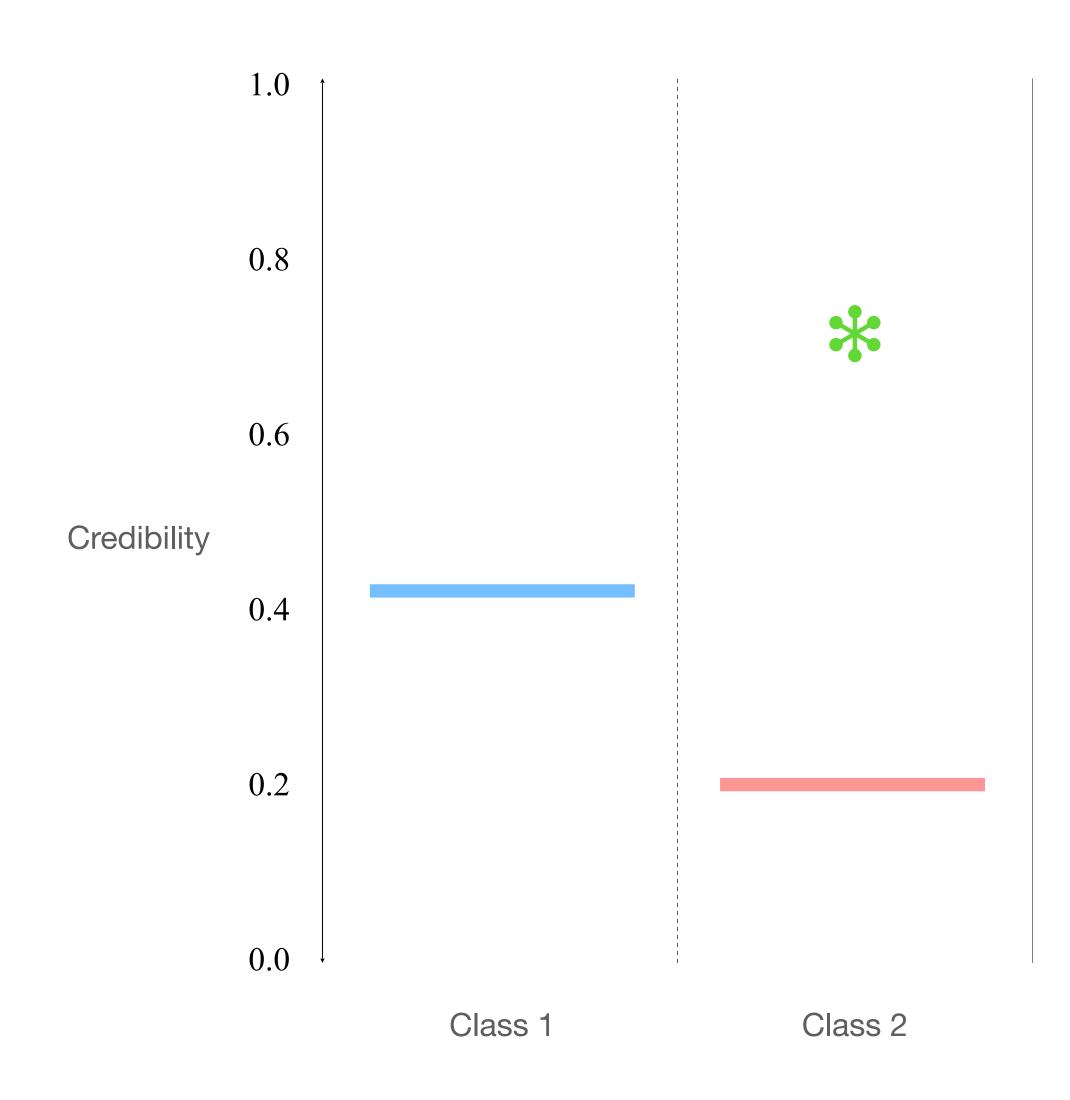


• How much drift is too much?

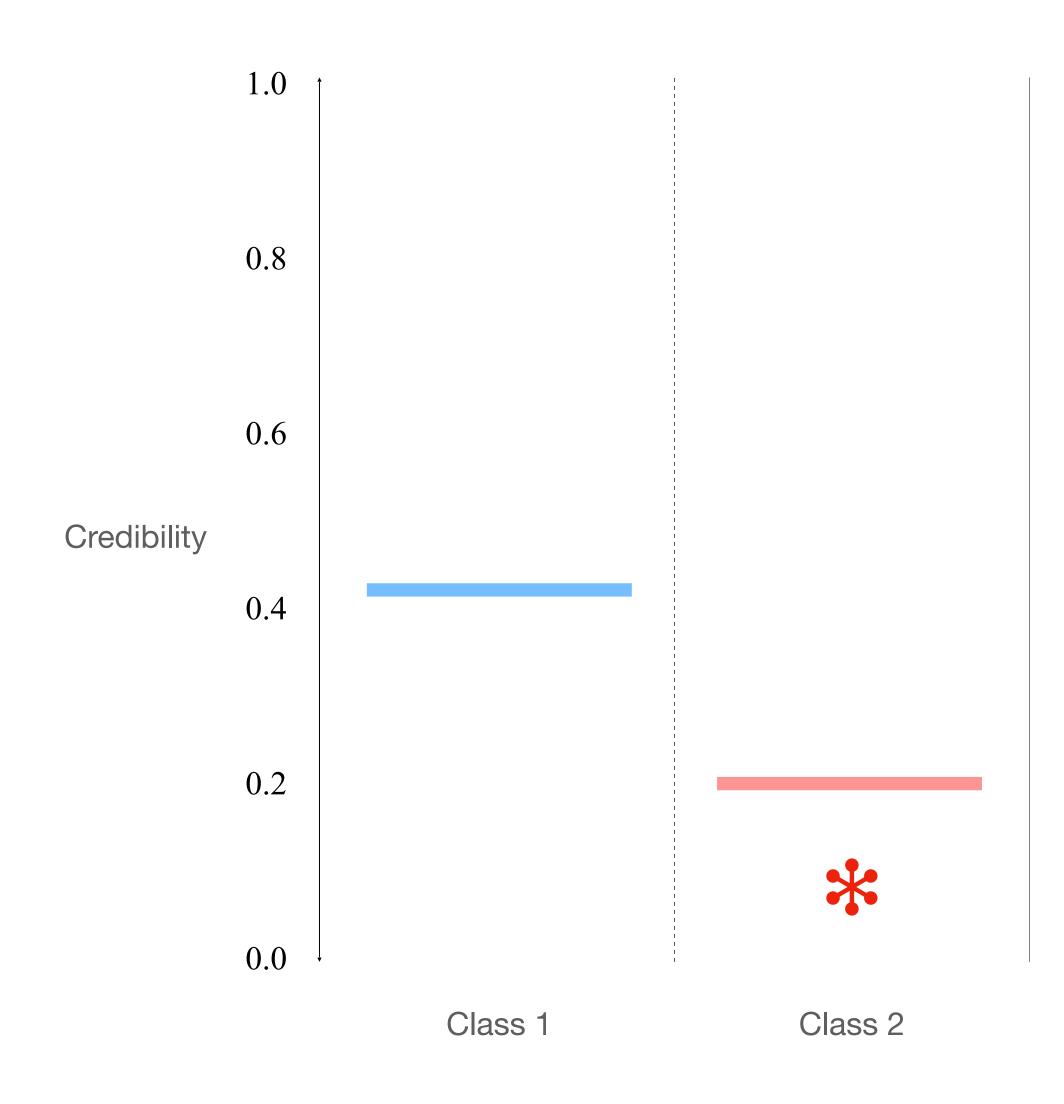
- Produce a threshold for each class
- Optimize cost vs performance on training and calibration sets
- Maximise separation between credibility of correct and incorrect decisions



- Credibilities of new examples are compared against the threshold of their predicted class
- Above = keep the prediction
- Below = reject the prediction

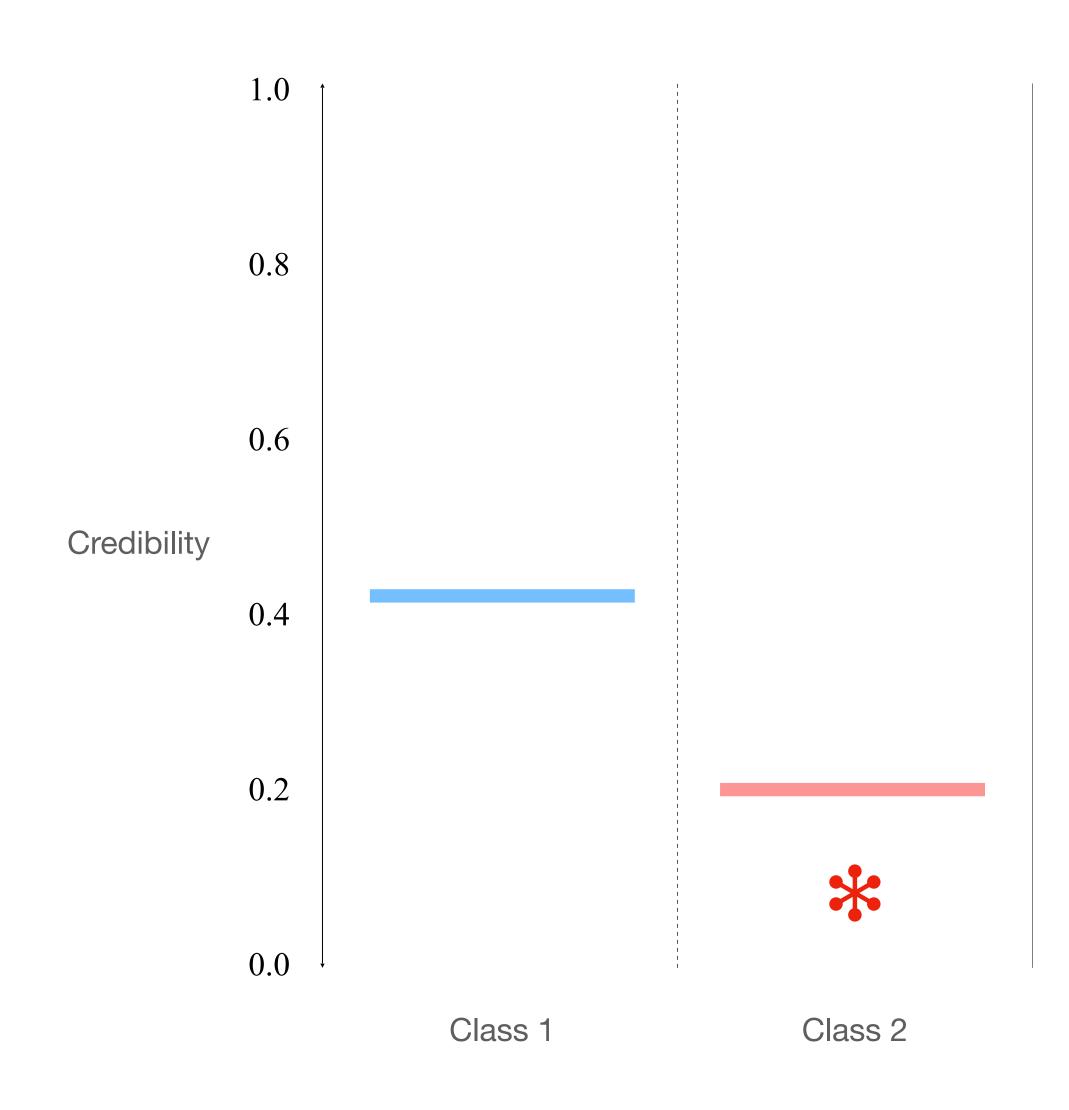


- Credibilities of new examples are compared against the threshold of their predicted class
- Above = keep the prediction
- Below = reject the prediction



- Credibilities of new examples are compared against the threshold of their predicted class
- Above = keep the prediction
- Below = reject the prediction

Rejection Cost



Rejection Cost

* [AlSec 2021] Investigating Labelless Drift Adaptation for Malware Detection
 * [AlSec 2021] INSOMNIA: Towards Concept-Drift Robustness in Network Intrusion Detection

- Actions for rejected points *:
 - Manual inspection
 - Downstream analysis
 - Quarantine
 - Exemption

The Cost of Transductive Conformal Evaluators

Target of p-value computation

Remaining points

- Underlying classifier retrained for every training point
 - Rooted in CP theory
 - Often computationally infeasible

Approximate TCE

-

Target of p-value computation

Remaining points

- P-values computed in batches
- Relies on unsound assumption

Inductive Conformal Evaluator (ICE)

- Target of p-value computation
- Remaining points
- Excluded points used for prediction but not evaluation

 Increase speed by splitting into training and calibration sets • Rooted in CP theory Computationally efficient Informationally inefficient

Cross-Conformal Evaluator (CCE)

Inspired by cross validation - multiple
 ICEs in parallel vote on evaluation

- Rooted in CP theory
- Computationally efficient
- Informationally efficient

Experimental Setup

Experimental Setup

Android

- DREBIN w/ ~260K apps (Jan 2014 Dec 2018)
- Linear SVM, binary feature space

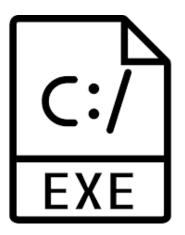
Experimental Setup

Android

- DREBIN w/ ~260K apps (Jan 2014 Dec 2018)
- Linear SVM, binary feature space

Windows PE

- EMBER v2 w/ ~117K apps (Jan 2017 Dec 2017)
- Gradient Boosted Decision Tree (GBDT)



Experimental Setup

Android

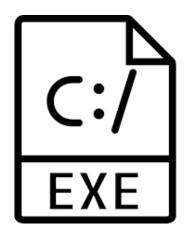
- DREBIN w/ ~260K apps (Jan 2014 Dec 2018)
- Linear SVM, binary feature space

Windows PE

- EMBER v2 w/ ~117K apps (Jan 2017 Dec 2017)
- Gradient Boosted Decision Tree (GBDT)

PDF

- Hidost w/ ~189k apps (Aug 2017 Sep 2017)
- Random Forest, features robust to drift



Experimental Setup

Android

- DREBIN w/ ~260K apps (Jan 2014 Dec 2018)
- Linear SVM, binary feature space

Windows PE

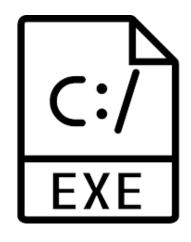
- EMBER v2 w/ ~117K apps (Jan 2017 Dec 2017)
- Gradient Boosted Decision Tree (GBDT)

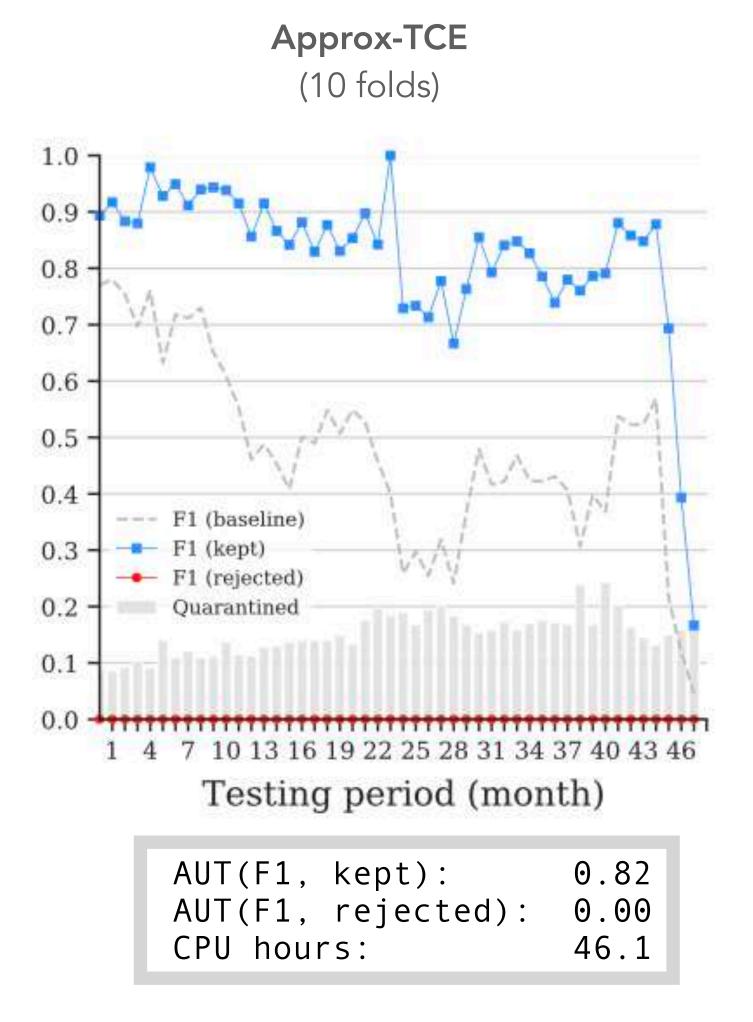
PDF

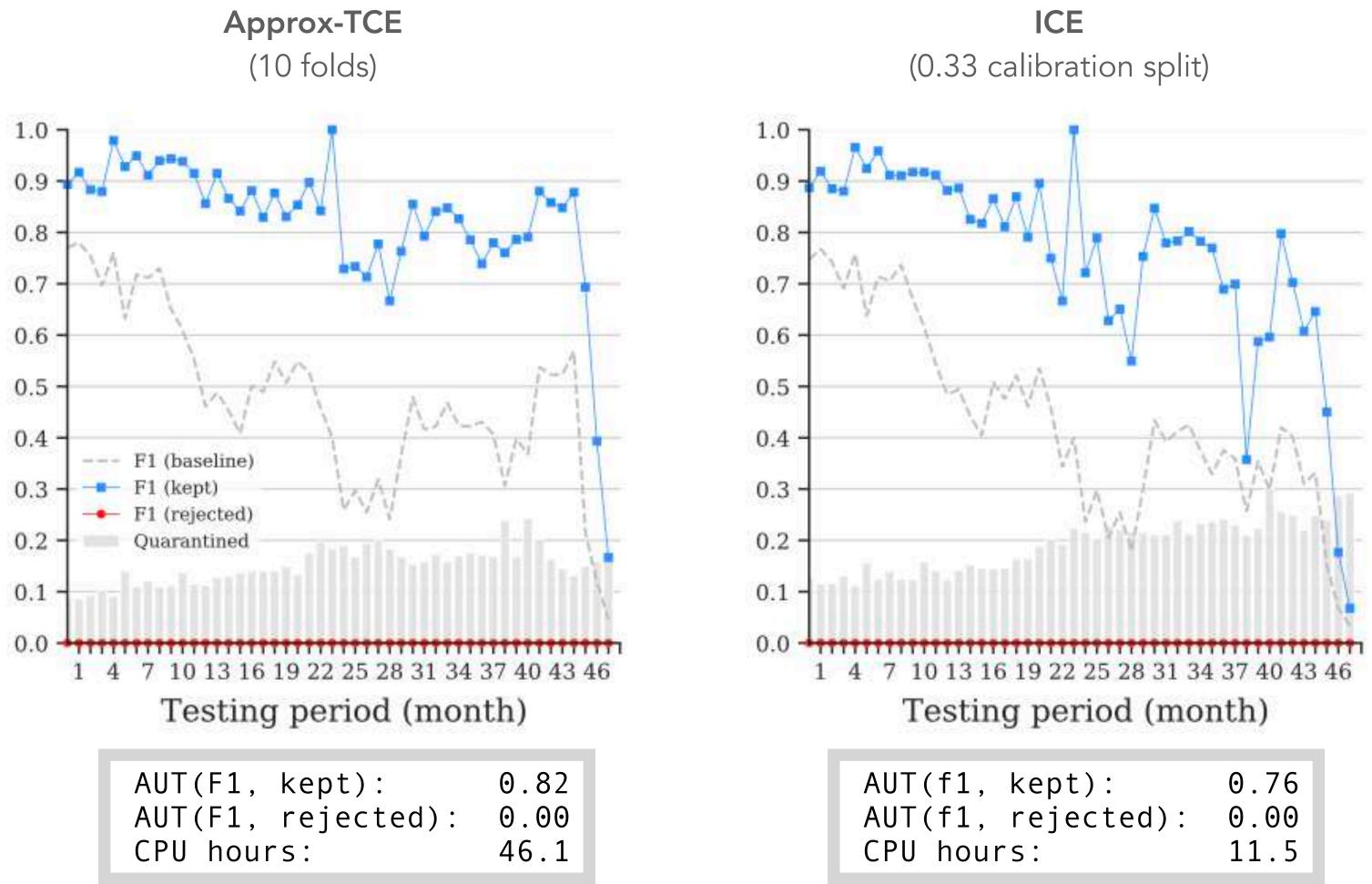
- Hidost w/ ~189k apps (Aug 2017 Sep 2017)
- Random Forest, features robust to drift

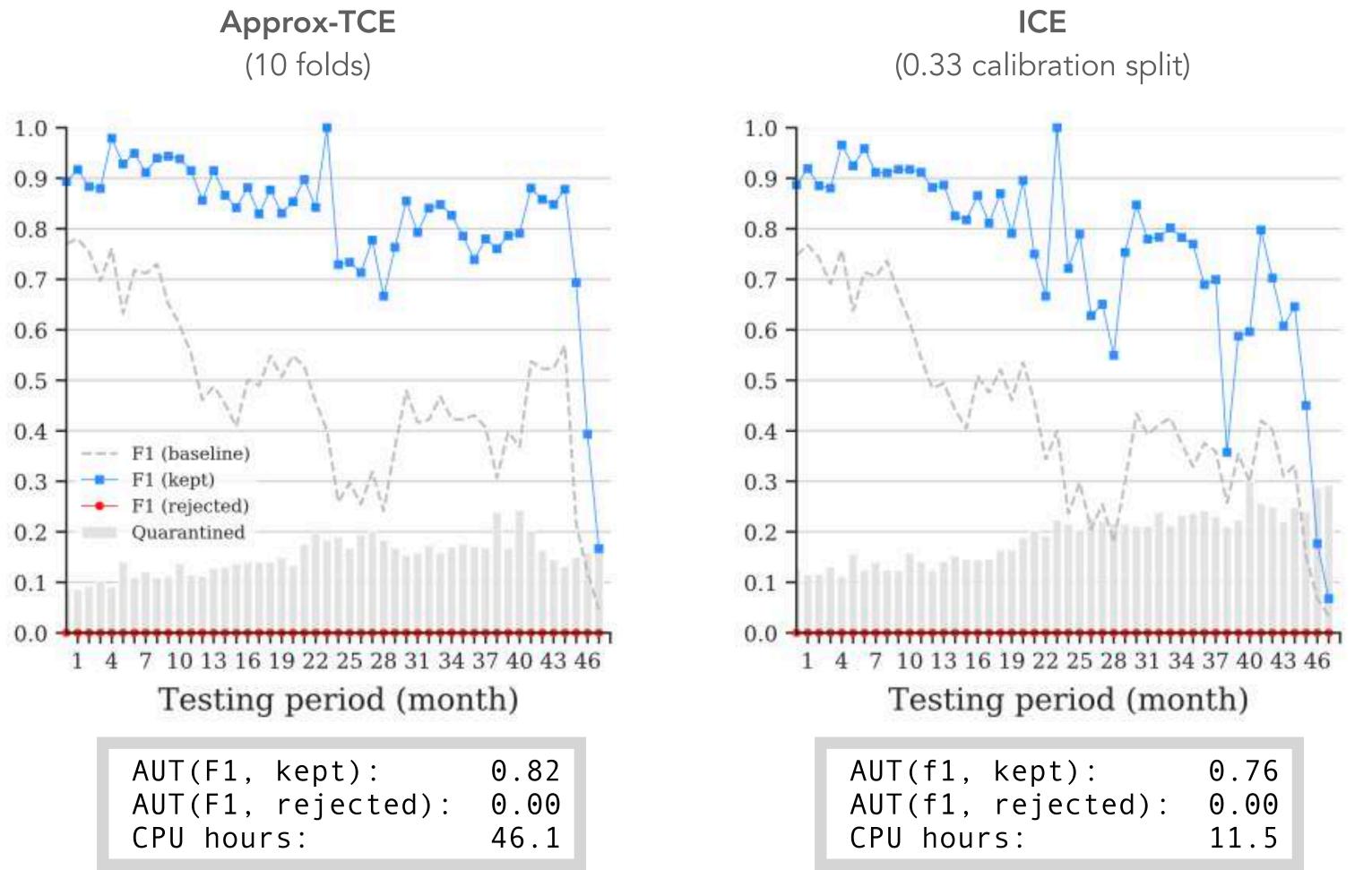
Thresholding Optimization

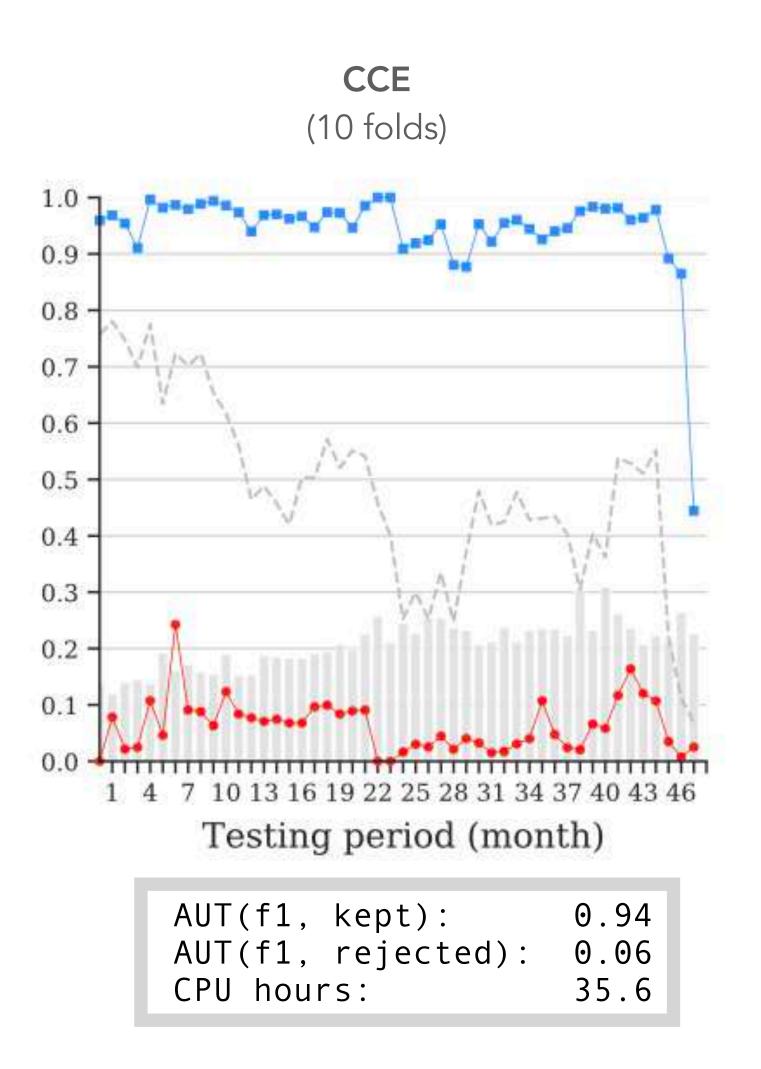
Constraints: minimum F1 of 0.9 for kept elements @ rejection rate < 15%



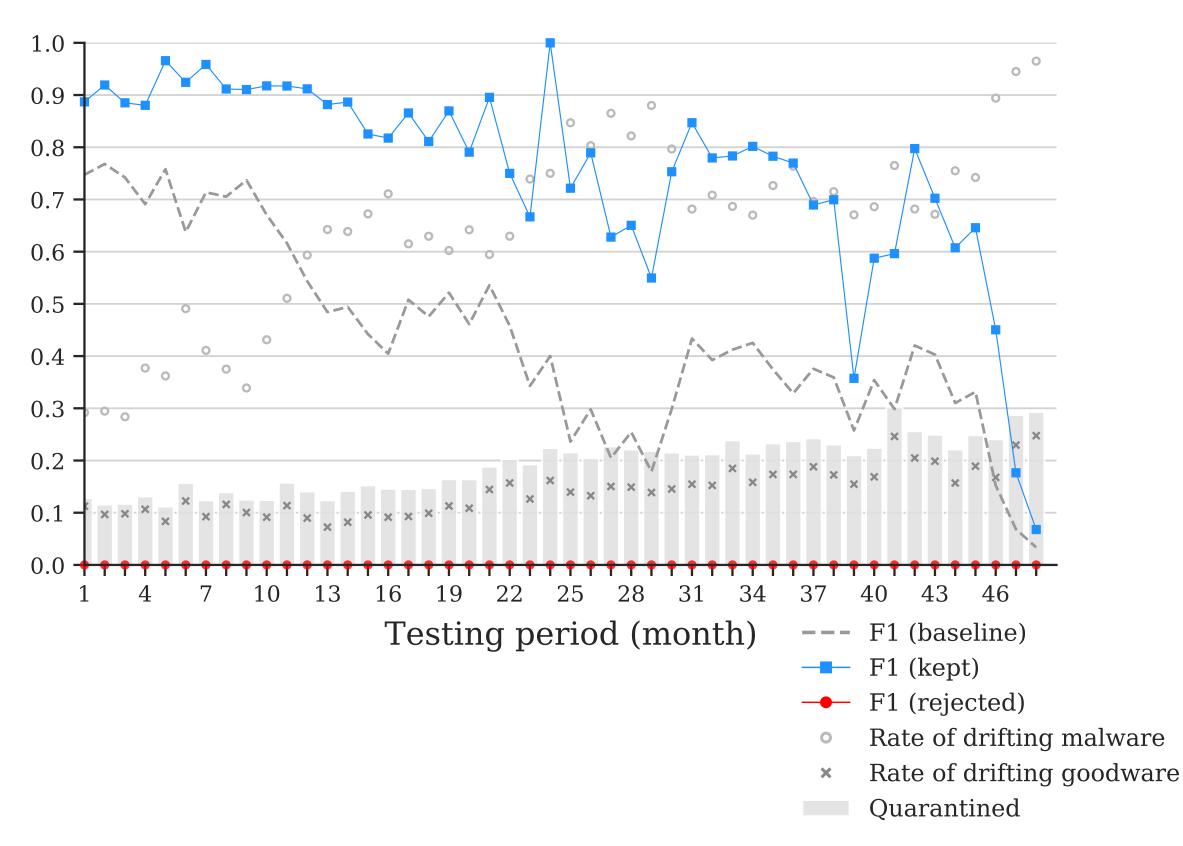




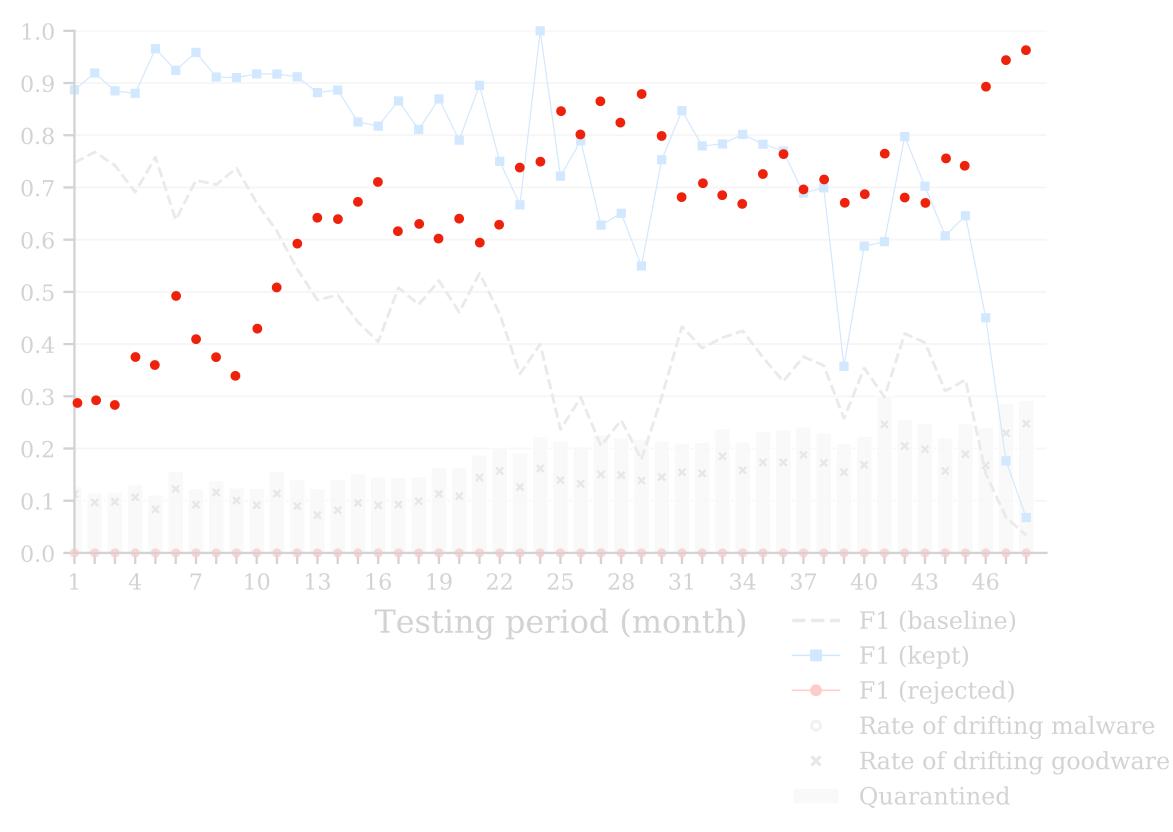




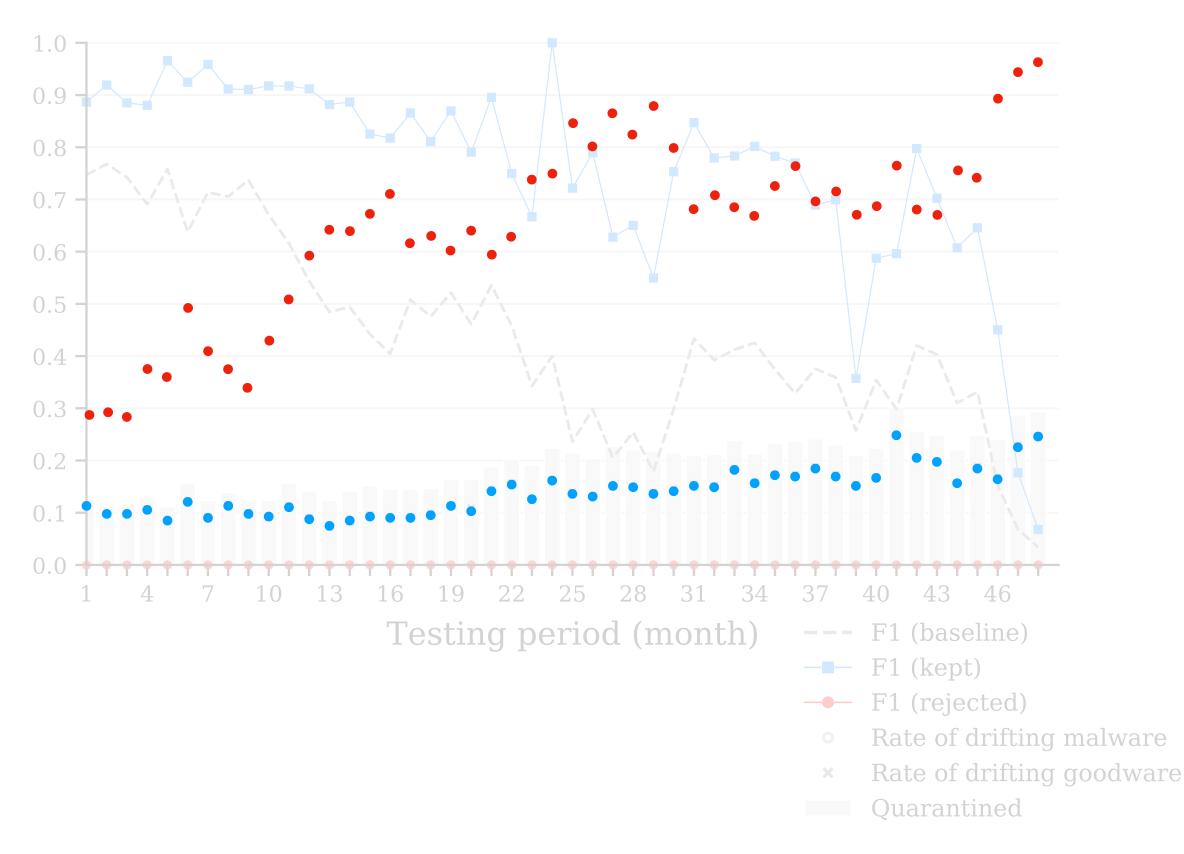
Android Malware (maximizing F1)



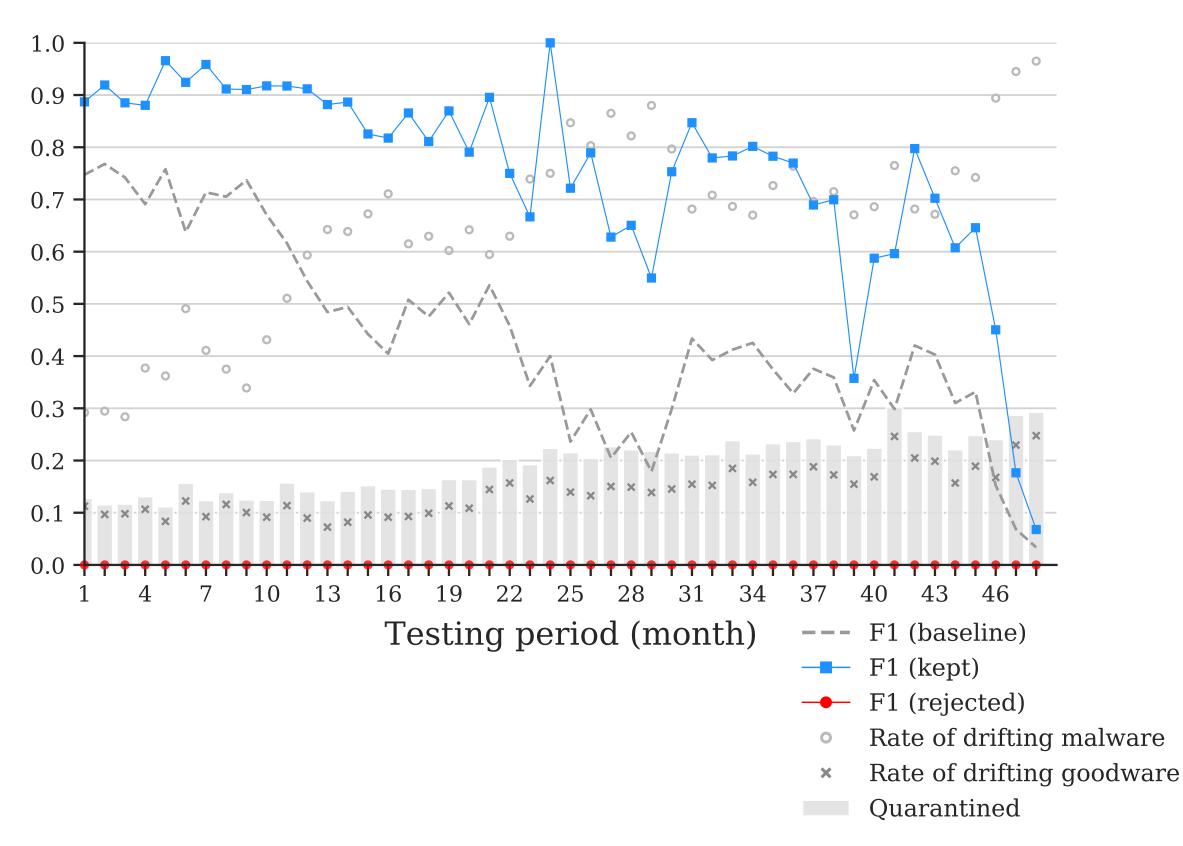
Android Malware (maximizing F1)



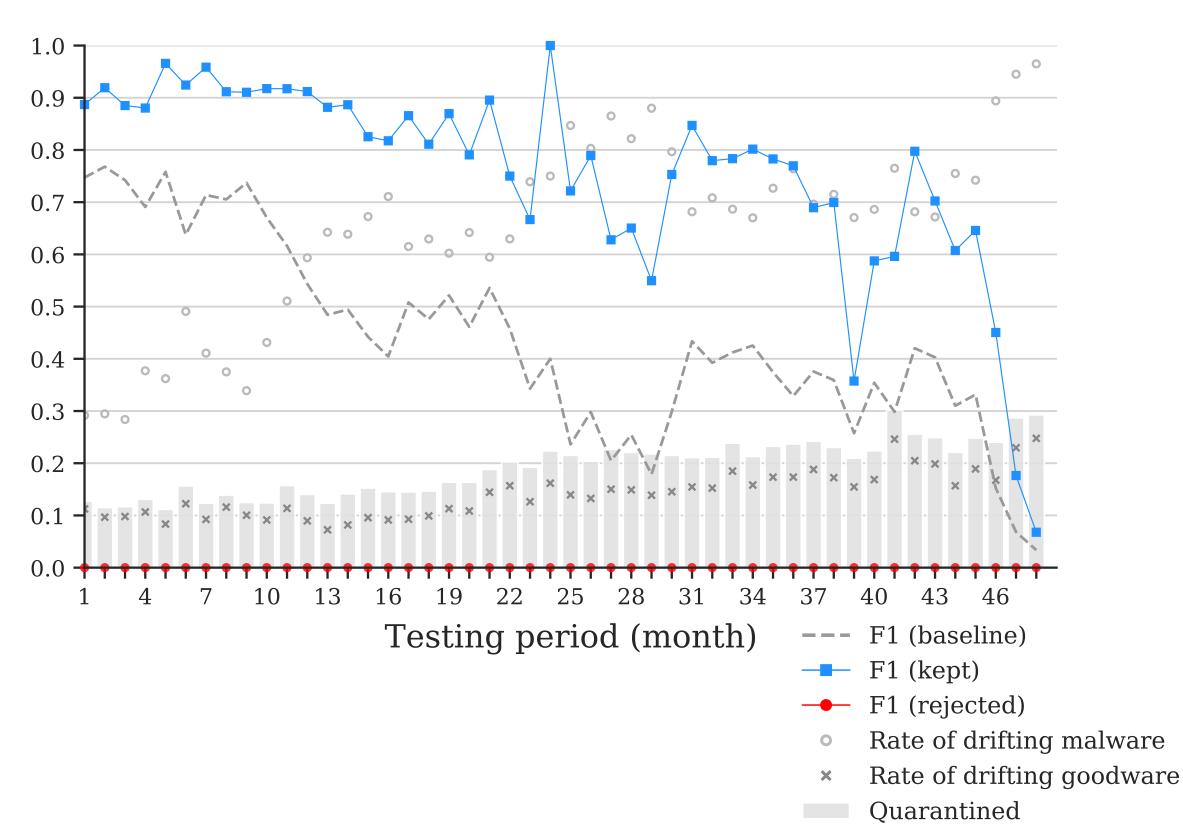
Android Malware (maximizing F1)



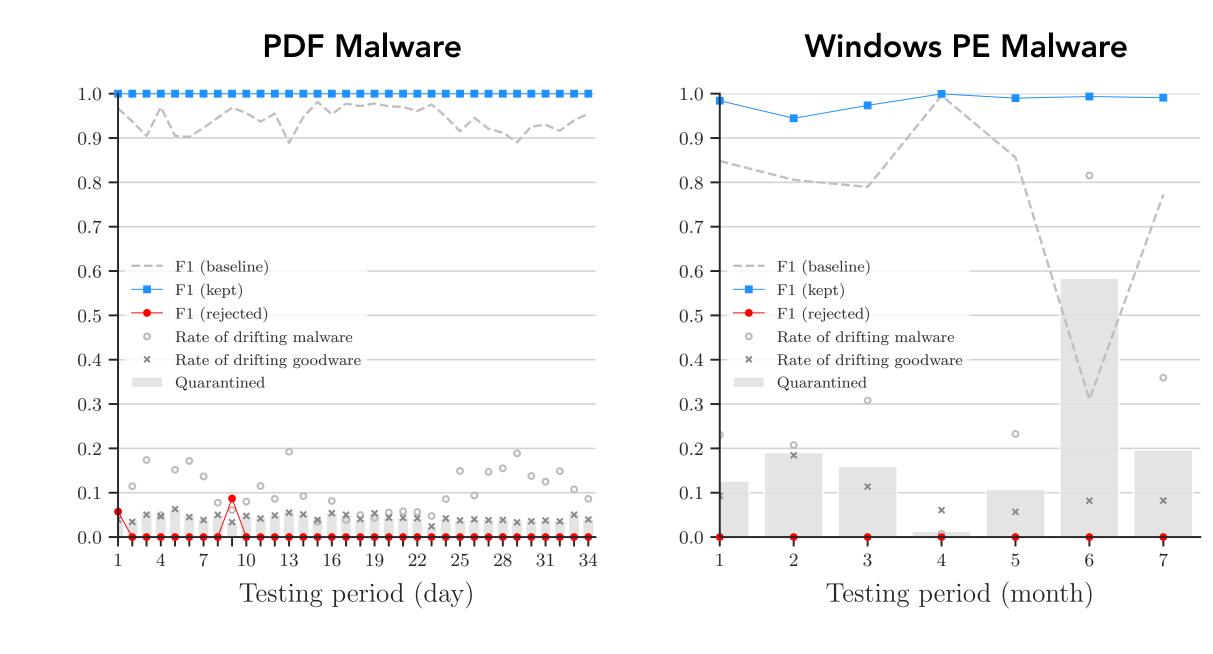
Android Malware (maximizing F1)



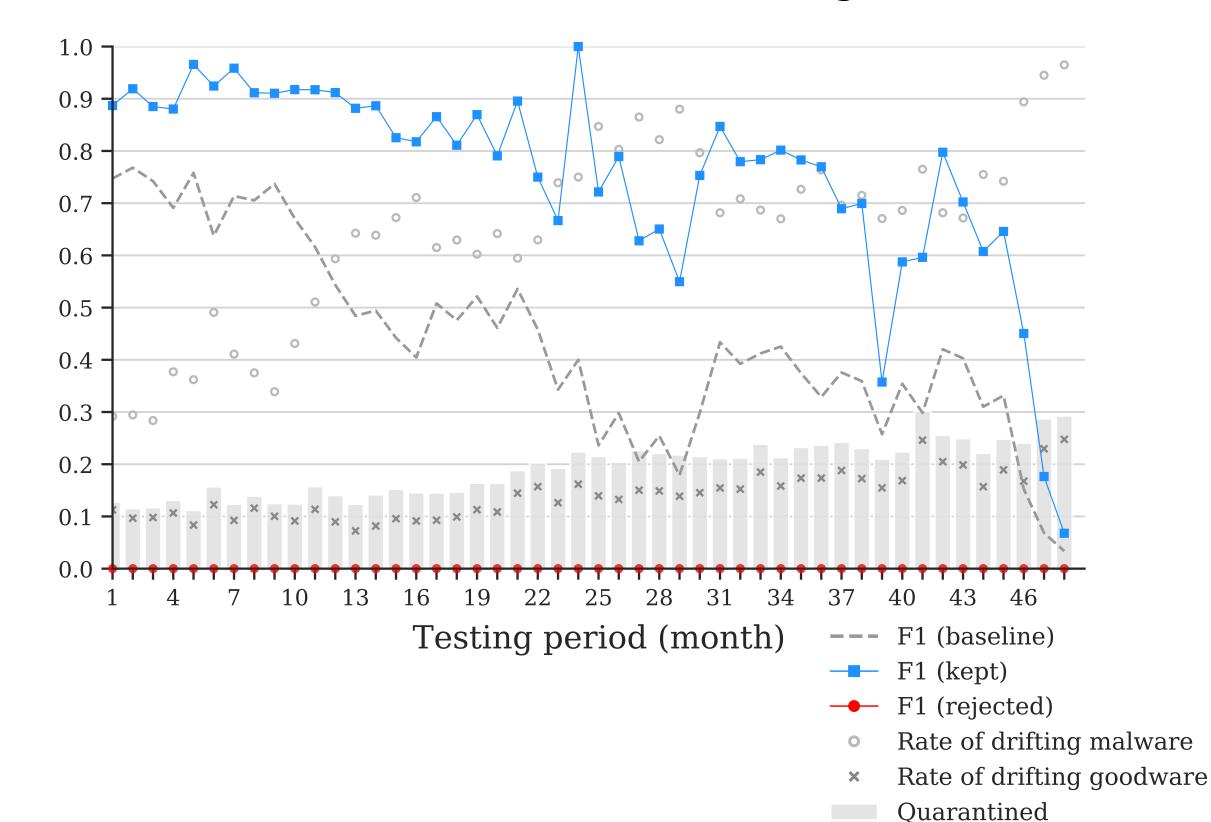
[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift https://s2lab.cs.ucl.ac.uk/projects/transcend/



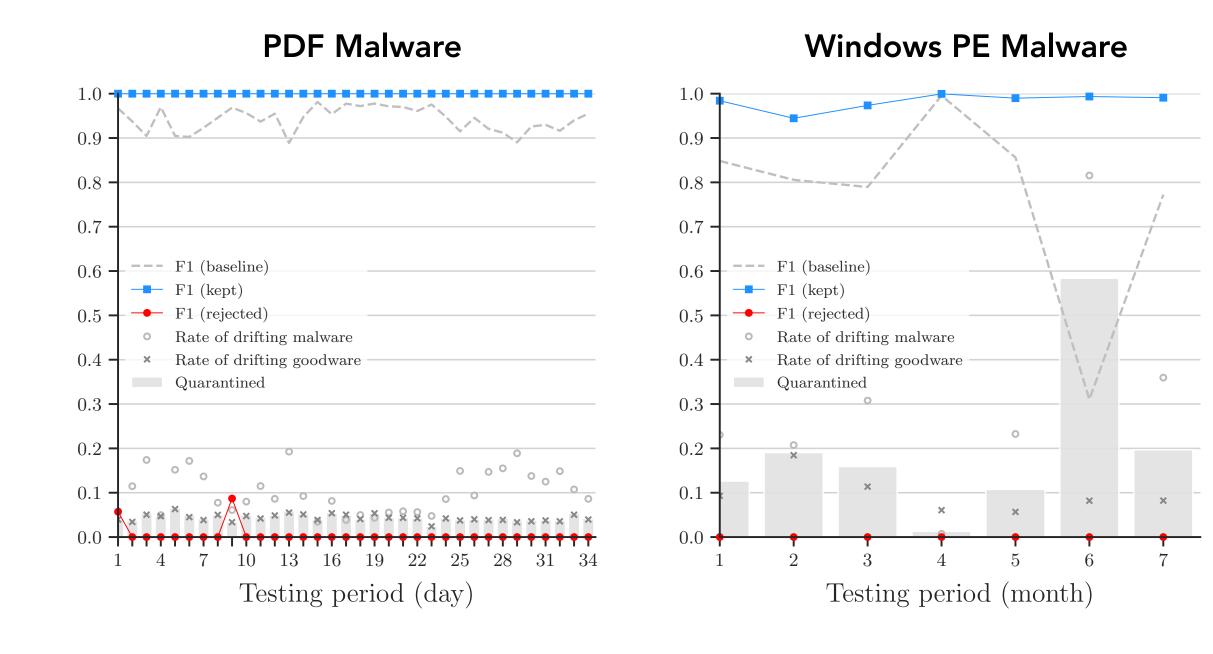
Android Malware (maximizing F1)

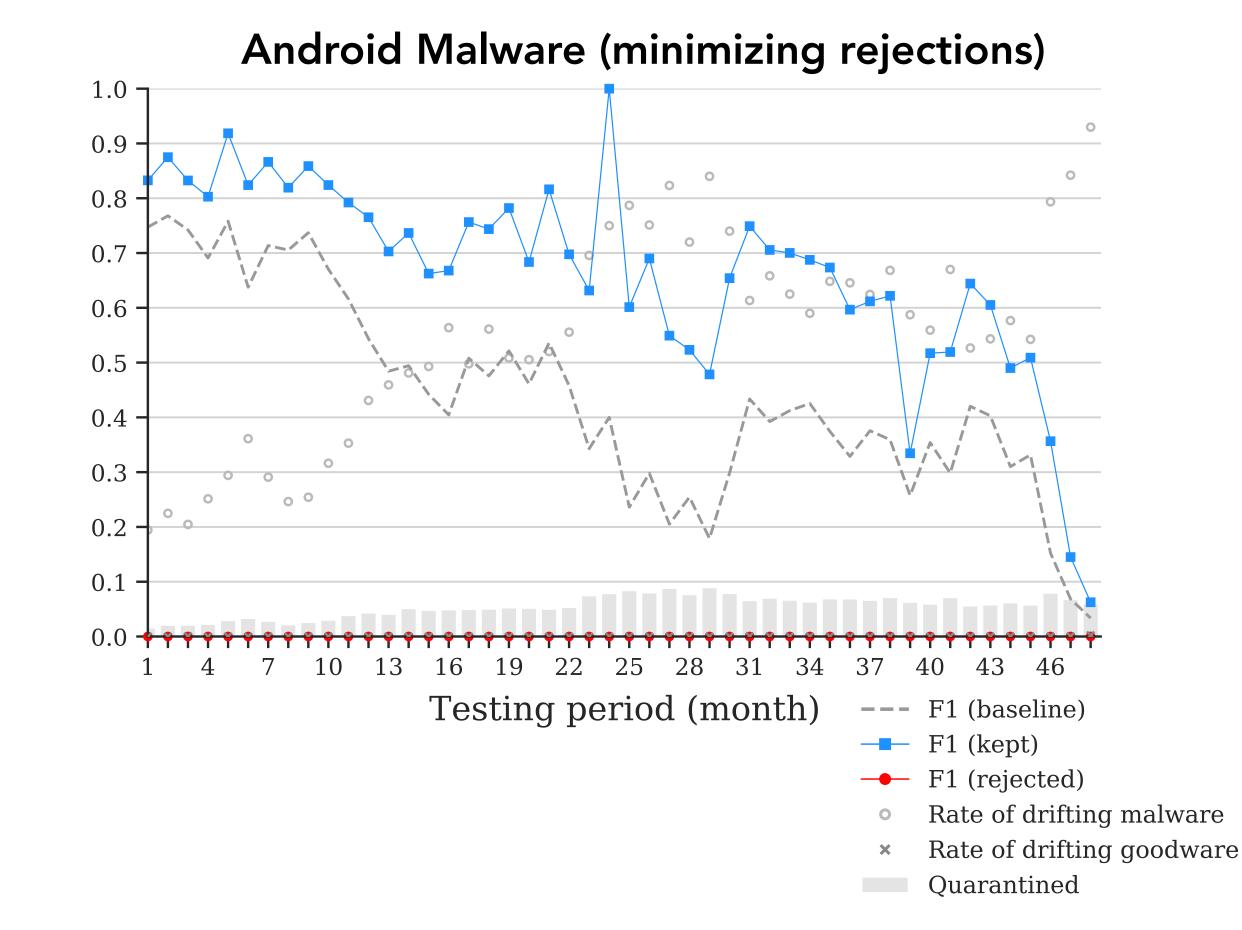


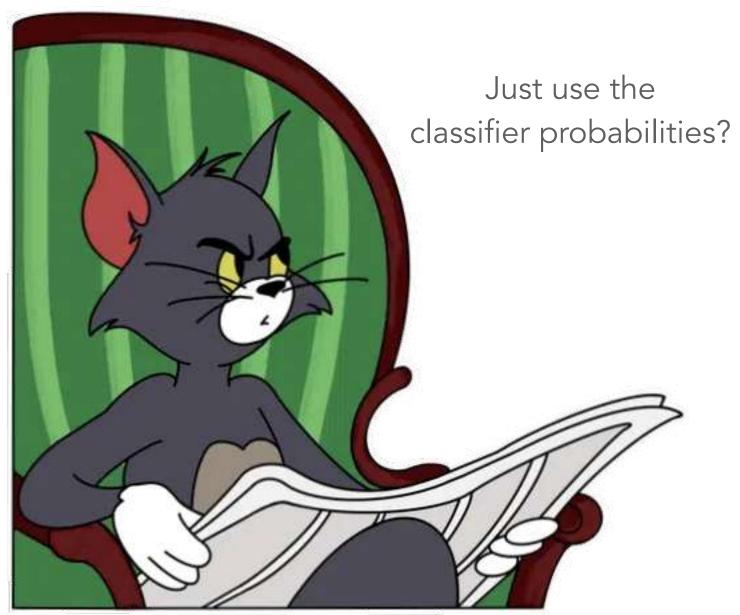
[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift https://s2lab.cs.ucl.ac.uk/projects/transcend/

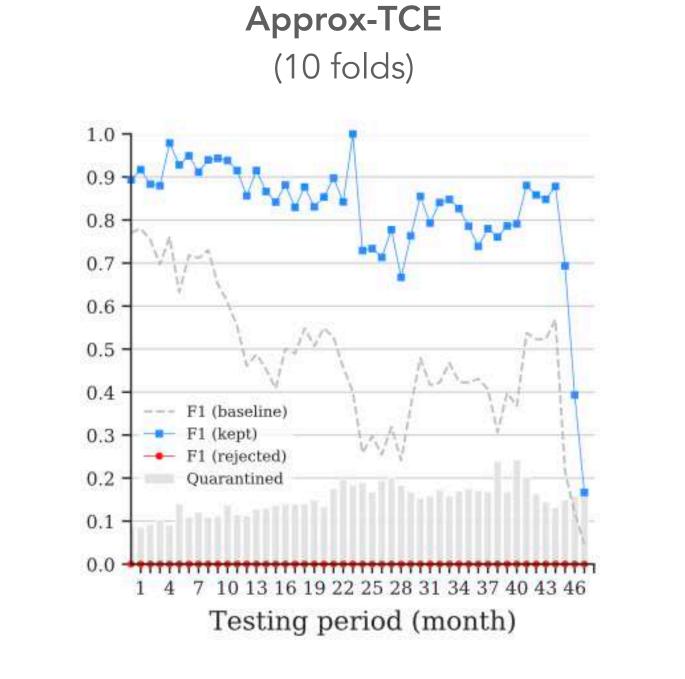


Android Malware (maximizing F1)

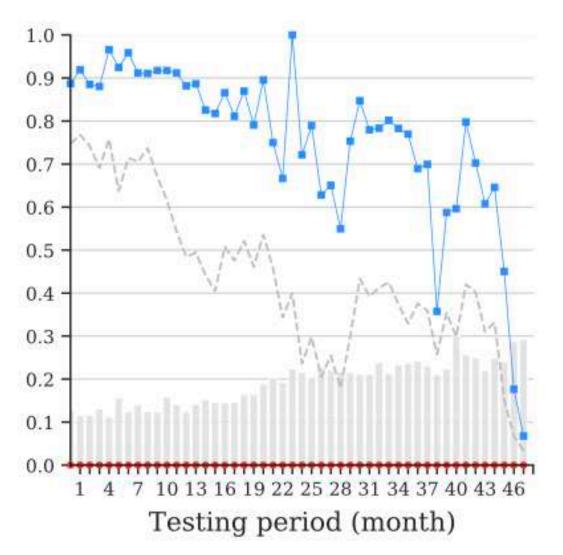




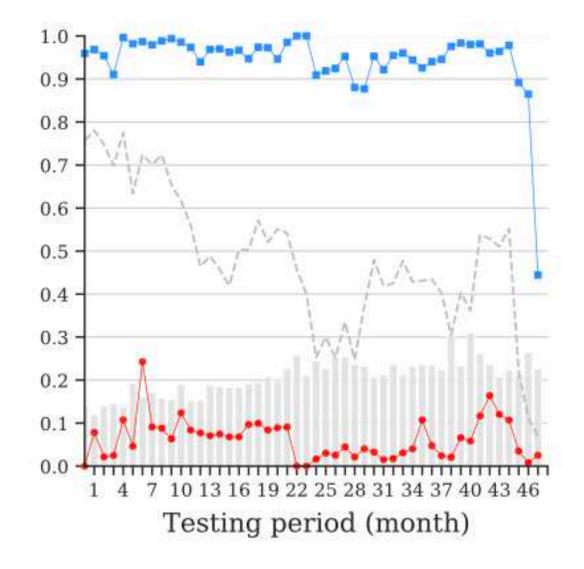


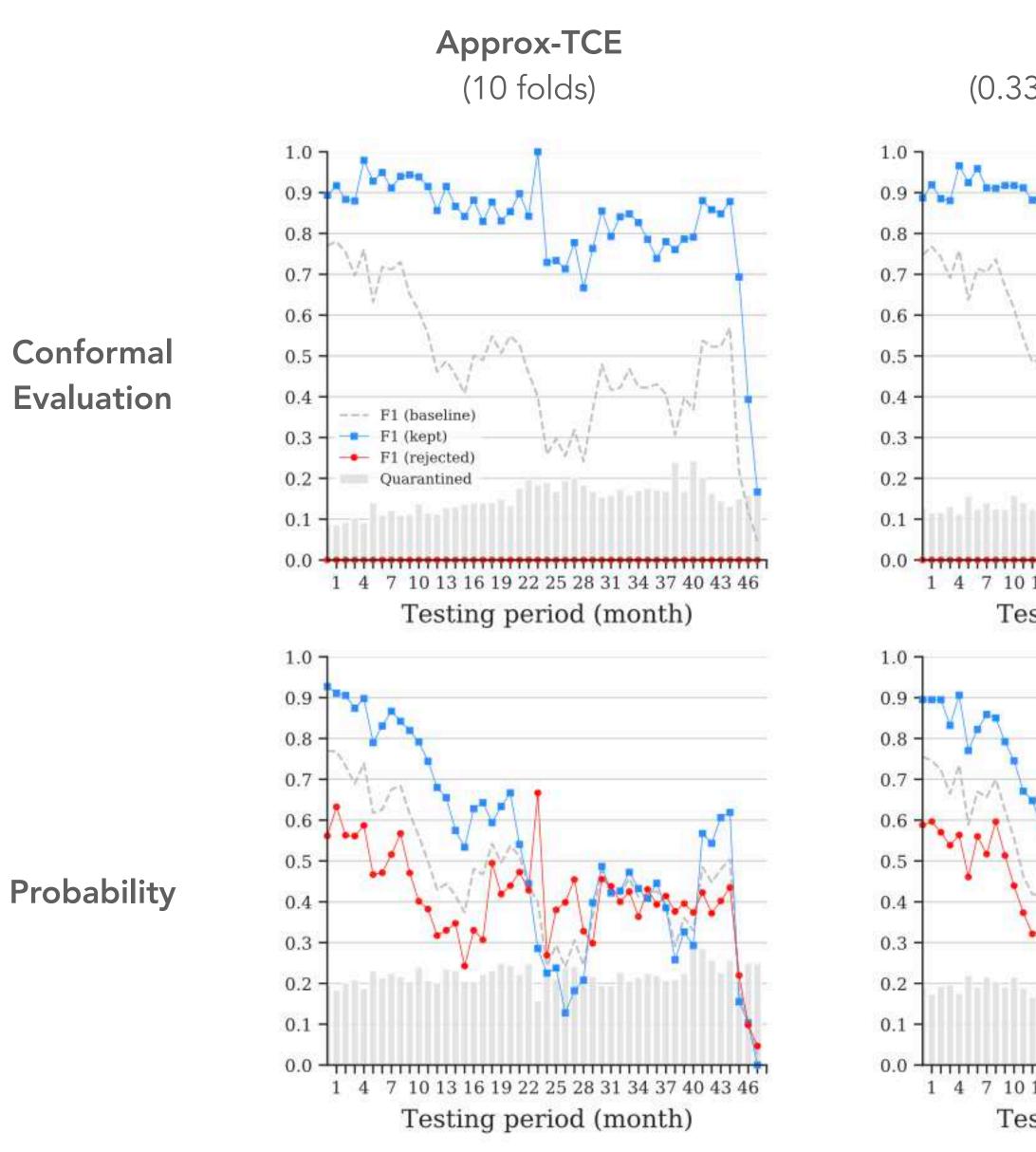


Conformal Evaluation

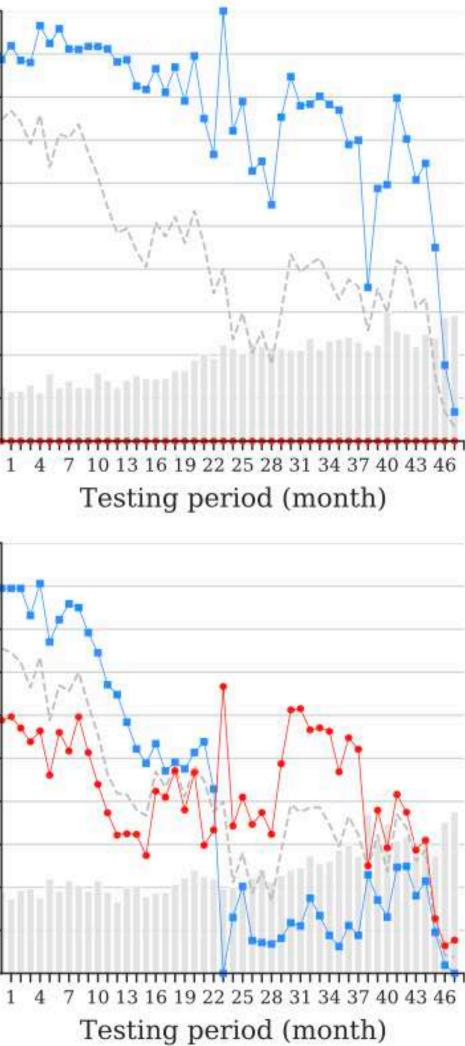


CCE (10 folds)

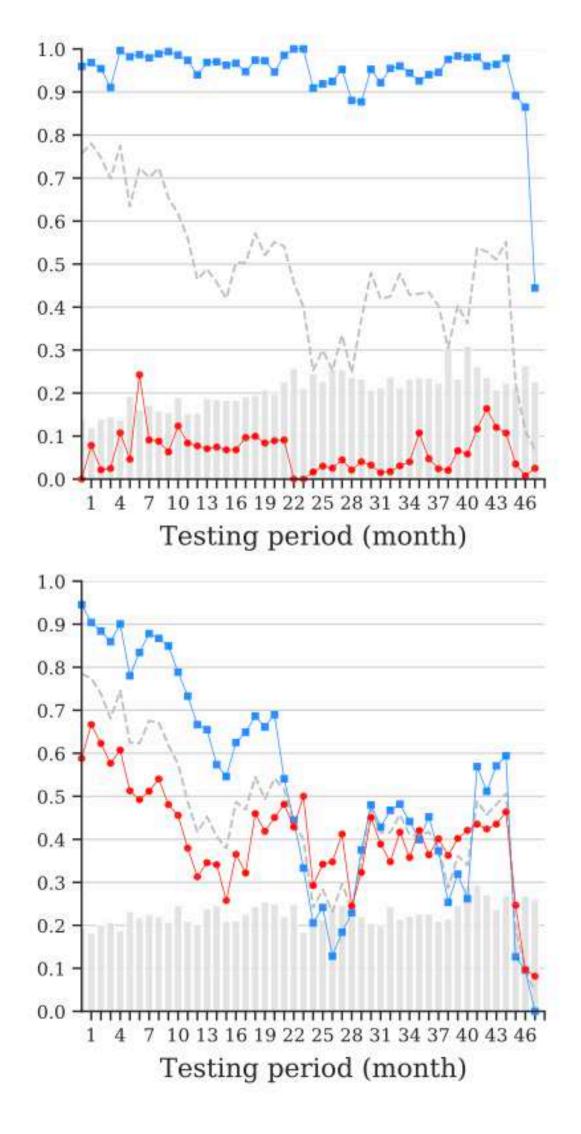




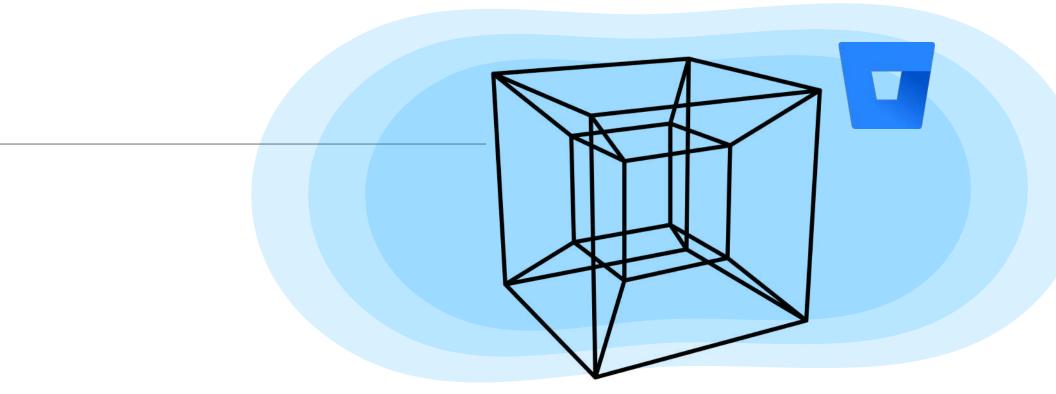
ICE (0.33 calibration split)



CCE (10 folds)



[1] Pendlebury et al., TESSERACT: Eliminating experimental bias in malware classification across space and time, USENIX Security 2019
[2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the problem psace, IEEE S&P 2020
[3] Jordaney et al., Transcend: Detecting concept drift in malware classification models, USENIX Security 2017
[4] Barbero et al., Transcending Transcend: Revisiting malware classification in the presence of concept drift, IEEE S&P 2022
[5] Arp et al., Dos and Dont's of Machine Learning in Security, USENIX Security 2022



- Computer Security is highly **non-stationary** [1] and often **class-imbalanced**
 - > Arms-race between attackers and defenders; role of abstractions/representations
 - > Perform time-aware evaluations, and avoid pitfalls [5]
 - > Assume things go wrong: explore rejection options [3,4], active learning, online learning

[1] Pendlebury et al., TESSERACT: Eliminating experimental bias in malware classification across space and time, USENIX Security 2019 [2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the problem psace, IEEE S&P 2020 [3] Jordaney et al., Transcend: Detecting concept drift in malware classification models, USENIX Security 2017 [4] Barbero et al., Transcending Transcend: Revisiting malware classification in the presence of concept drift, IEEE S&P 2022 [5] Arp et al., **Dos and Dont's of Machine Learning in Security**, USENIX Security 2022

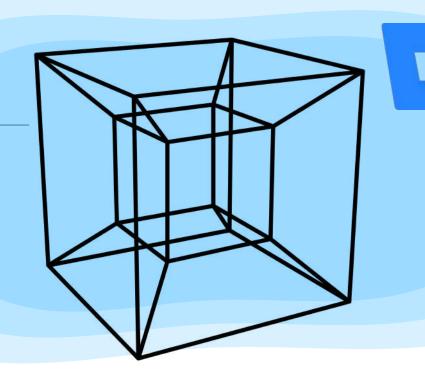
- Computer Security is highly **non-stationary** [1] and often **class-imbalanced**
 - > Arms-race between attackers and defenders; role of abstractions/representations
 - > Perform time-aware evaluations, and avoid pitfalls [5]
 - > Assume things go wrong: explore rejection options [3,4], active learning, online learning
- Reason about problem space (relizable) adversarial attacks and defenses [2]

[1] Pendlebury et al., TESSERACT: Eliminating experimental bias in malware classification across space and time, USENIX Security 2019 [2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the problem psace, IEEE S&P 2020 [3] Jordaney et al., Transcend: Detecting concept drift in malware classification models, USENIX Security 2017 [4] Barbero et al., Transcending Transcend: Revisiting malware classification in the presence of concept drift, IEEE S&P 2022 [5] Arp et al., **Dos and Dont's of Machine Learning in Security**, USENIX Security 2022

- Computer Security is highly **non-stationary** [1] and often **class-imbalanced**
 - > Arms-race between attackers and defenders; role of abstractions/representations > Perform time-aware evaluations, and avoid pitfalls [5]

 - > Assume things go wrong: explore rejection options [3,4], active learning, online learning
- Reason about problem space (relizable) adversarial attacks and defenses [2]
- Reason about the relationship between adversarial ML and dataset shifts

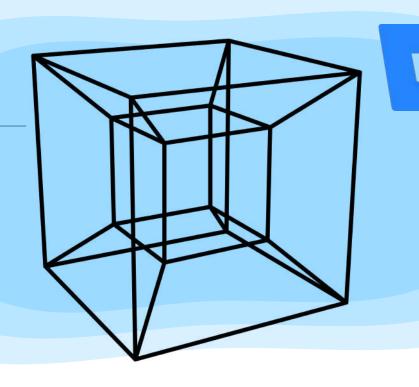
[1] Pendlebury et al., TESSERACT: Eliminating experimental bias in malware classification across space and time, USENIX Security 2019 [2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the problem psace, IEEE S&P 2020 [3] Jordaney et al., Transcend: Detecting concept drift in malware classification models, USENIX Security 2017 [4] Barbero et al., Transcending Transcend: Revisiting malware classification in the presence of concept drift, IEEE S&P 2022 [5] Arp et al., **Dos and Dont's of Machine Learning in Security**, USENIX Security 2022



- Computer Security is highly **non-stationary** [1] and often **class-imbalanced**
 - > Arms-race between attackers and defenders; role of abstractions/representations > Perform time-aware evaluations, and avoid pitfalls [5]

 - > Assume things go wrong: explore rejection options [3,4], active learning, online learning
- Reason about problem space (relizable) adversarial attacks and defenses [2]
- Reason about the relationship between adversarial ML and dataset shifts
- Reason about abstractions and representations and their effect on the entire ML pipeline

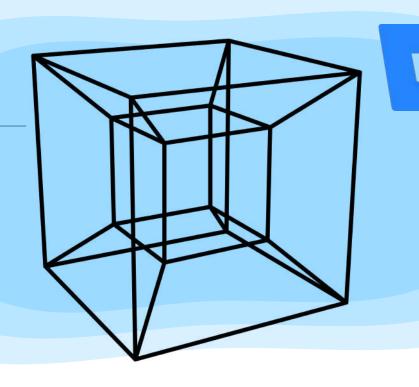
[1] Pendlebury et al., TESSERACT: Eliminating experimental bias in malware classification across space and time, USENIX Security 2019 [2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the problem psace, IEEE S&P 2020 [3] Jordaney et al., Transcend: Detecting concept drift in malware classification models, USENIX Security 2017 [4] Barbero et al., Transcending Transcend: Revisiting malware classification in the presence of concept drift, IEEE S&P 2022 [5] Arp et al., **Dos and Dont's of Machine Learning in Security**, USENIX Security 2022



- Computer Security is highly **non-stationary** [1] and often **class-imbalanced**
 - > Arms-race between attackers and defenders; role of abstractions/representations > Perform time-aware evaluations, and avoid pitfalls [5]

 - > Assume things go wrong: explore rejection options [3,4], active learning, online learning
- Reason about problem space (relizable) adversarial attacks and defenses [2]
- Reason about the relationship between adversarial ML and dataset shifts
- Reason about abstractions and representations and their effect on the entire ML pipeline
- Bridging the academia-industry gap
 - > See https://s2lab.cs.ucl.ac.uk for access

[1] Pendlebury et al., TESSERACT: Eliminating experimental bias in malware classification across space and time, USENIX Security 2019 [2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the problem psace, IEEE S&P 2020 [3] Jordaney et al., Transcend: Detecting concept drift in malware classification models, USENIX Security 2017 [4] Barbero et al., Transcending Transcend: Revisiting malware classification in the presence of concept drift, IEEE S&P 2022 [5] Arp et al., **Dos and Dont's of Machine Learning in Security**, USENIX Security 2022



- Computer Security is highly **non-stationary** [1] and often **class-imbalanced**
 - > Arms-race between attackers and defenders; role of abstractions/representations > Perform **time-aware** evaluations, and avoid pitfalls [5]

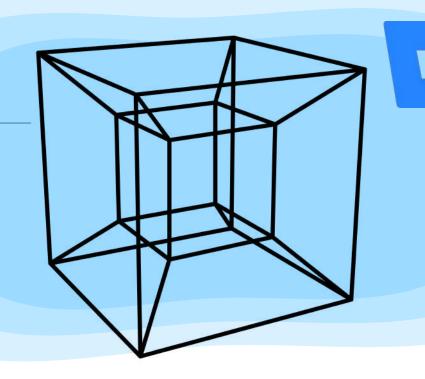
 - > Assume things go wrong: explore rejection options [3,4], active learning, online learning
- Reason about problem space (relizable) adversarial attacks and defenses [2]
- Reason about the relationship between adversarial ML and dataset shifts
- Reason about abstractions and representations and their effect on the entire ML pipeline
- Bridging the academia-industry gap
 - > See https://s2lab.cs.ucl.ac.uk for access

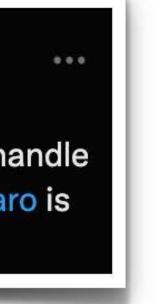
[1] Pendlebury et al., TESSERACT: Eliminating experimental bias in malv [2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the p [3] Jordaney et al., Transcend: Detecting concept drift in malware classif [4] Barbero et al., Transcending Transcend: Revisiting malware classificat [5] Arp et al., Dos and Dont's of Machine Learning in Security, USENIX Security 2022

https://twitter.com/joshua_saxe/status/1550545466072264704

Scott Coull @DrScottCoull · Jul 27

Generally, things don't need to be perfectly secure to still be useful in practice, as long as we know the weaknesses and subsequent layers handle them. The conformal learning and similar work mentioned by @lcavallaro is a popular approach in industry.





Our Open-Source Libraries

• Requested access by 120+ organizations, including (honorable mentions):

Carnegie Mellon University

Technical University of Munich

VISA

amazon webservices

UNIVERSITY OF TORONTO

Georgia Tech

- Computer Security is highly **non-stationary** [1] and often **class-imbalanced**
 - > Arms-race between attackers and defenders; role of abstractions/representations > Perform **time-aware** evaluations, and avoid pitfalls [5]

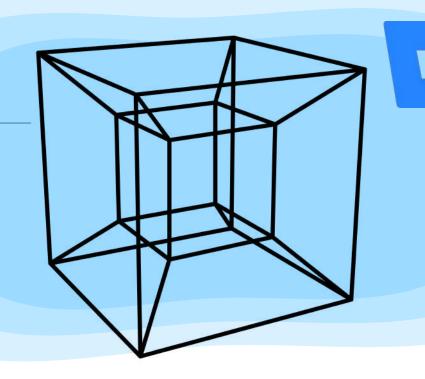
 - > Assume things go wrong: explore rejection options [3,4], active learning, online learning
- Reason about problem space (relizable) adversarial attacks and defenses [2]
- Reason about the relationship between adversarial ML and dataset shifts
- Reason about abstractions and representations and their effect on the entire ML pipeline
- Bridging the academia-industry gap
 - > See https://s2lab.cs.ucl.ac.uk for access

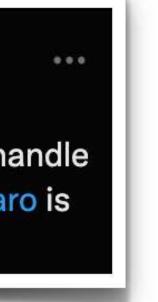
[1] Pendlebury et al., TESSERACT: Eliminating experimental bias in malv [2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the p [3] Jordaney et al., Transcend: Detecting concept drift in malware classif [4] Barbero et al., Transcending Transcend: Revisiting malware classificat [5] Arp et al., Dos and Dont's of Machine Learning in Security, USENIX Security 2022

https://twitter.com/joshua_saxe/status/1550545466072264704

Scott Coull @DrScottCoull · Jul 27

Generally, things don't need to be perfectly secure to still be useful in practice, as long as we know the weaknesses and subsequent layers handle them. The conformal learning and similar work mentioned by @lcavallaro is a popular approach in industry.





88

Outline

Adversarial ML evasion attacks against malware classifiers

- Classic formulation of evasion attacks is ill-suited for reasoning about realizable evasive malware
- By reformulating, we can propose stronger attacks and easily compare against alternatives
- Practical end-to-end automatic adversarial malware as a service how about defenses?

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space

Drifting scenarios caused by threats evolving over time

- How dataset shift affects machine learning-based detectors in security settings
- The need for time-aware evaluations and metrics
- Detecting shifts with abstaining classifiers and classification with rejection

[USENIX Sec 2017 & IEEE S&P 2022] Transcend: Detecting Con Transcending Transcend: Revisiting Malware Classification in t

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias

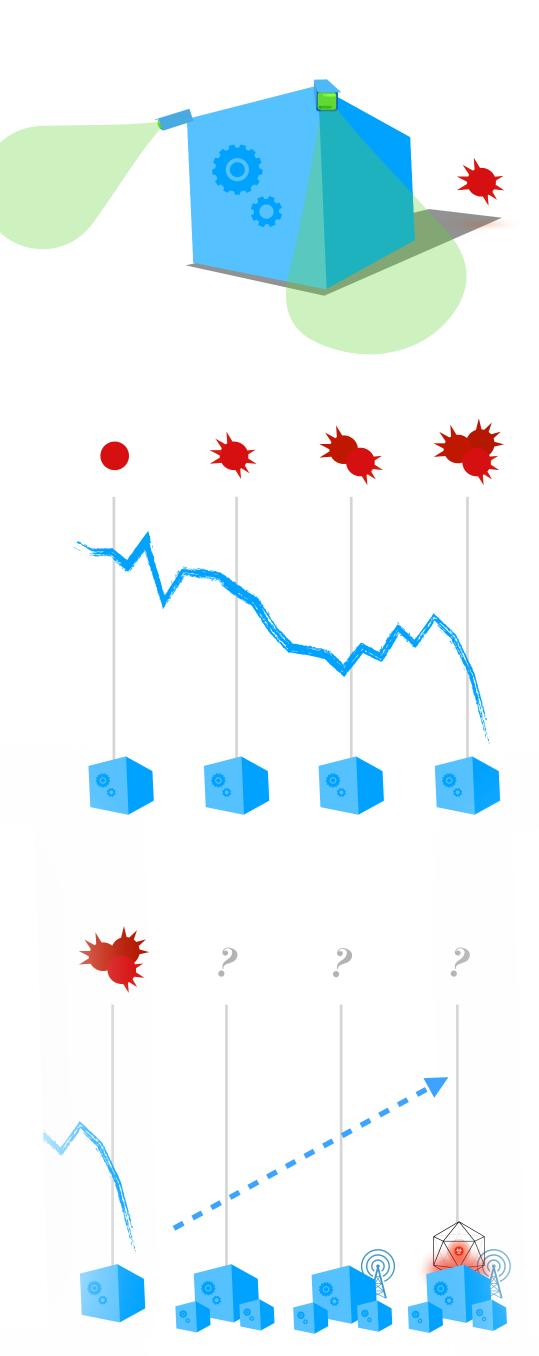
head Looking

Quo vadis?

- Discussion of the future of trustworthy ML for system security
- Robust representations, universal adversarial perturbations, realizable backdoors, drift forecasting, and the role of abstractions towards the Platonic ideal of semantics

[USENIX Sec 2022] Dos and Don'ts of Machine Learning in Computer Security

Focus



Outline

Adversarial ML evasion attacks against malware classifiers

- Classic formulation of evasion attacks is ill-suited for reasoning about realizable evasive malware
- By reformulating, we can propose stronger attacks and easily compare against alternatives
- Practical end-to-end automatic adversarial malware as a service how about defenses?

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space

- Drifting scenarios caused by threats evolving over time
- How dataset shift affects machine learning-based detectors in security settings
- The need for time-aware evaluations and metrics
- Detecting shifts with abstaining classifiers and classification with rejection

[USENIX Sec 2017 & IEEE S&P 2022] Transcend: Detecting Con

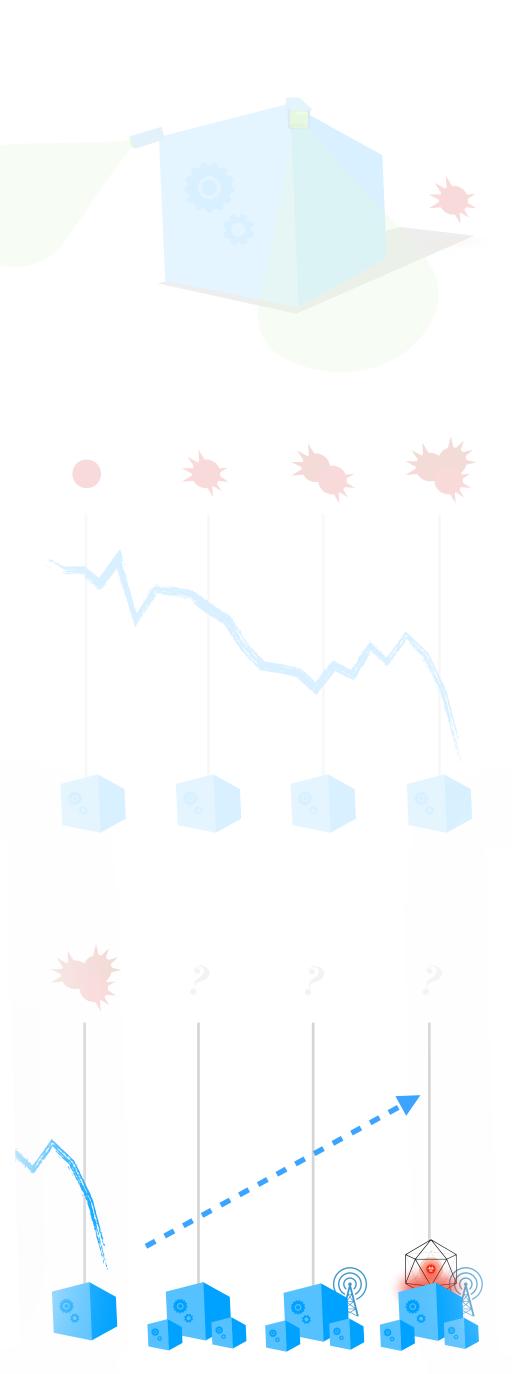
[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias

head Looking

Quo vadis?

- Discussion of the future of trustworthy ML for system security
- Robust representations, universal adversarial perturbations, realizable backdoors, drift forecasting, and the role of abstractions towards the Platonic ideal of semantics

[USENIX Sec 2022] Dos and Don'ts of Machine Learning in Computer Security



Trustworthy ML for **Systems Security**

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for Systems Security

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for Systems Security

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Problem-Space Backdoors

To explore realistic poisoning backdoors

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Problem-Space Backdoors

To explore realistic poisoning backdoors

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Problem-Space Backdoors

To explore realistic poisoning backdoors

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

To limit effectiveness of adversarial manipulation

(collab. with Avast)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Problem-Space Backdoors

To identify classifier poisoning vulnerabilities

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

To limit effectiveness of adversarial manipulation

(collab. with Avast)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Forecasting Future Drift

To proactively anticipate and adapt to concept drift

Problem-Space Backdoors

To identify classifier poisoning vulnerabilities

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

To limit effectiveness of adversarial manipulation

(collab. with Avast)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Forecasting Future Drift

To proactively anticipate and adapt to concept drift

Problem-Space Backdoors

To identify classifier poisoning vulnerabilities

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

To limit effectiveness of adversarial manipulation

(collab. with Avast)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Forecasting Future Drift

To proactively anticipate and adapt to concept drift

Problem-Space Backdoors

To identify classifier poisoning vulnerabilities

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Semantics Multitask Learning

Towards a Platonic ideal of binary abstraction

(collab. with Columbia University)

Robust Features

To limit effectiveness of adversarial manipulation

(collab. with Avast)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Forecasting Future Drift

To proactively anticipate and adapt to concept drift

Problem-Space Backdoors

To identify classifier poisoning vulnerabilities

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Semantics Multitask Learning

Towards a Platonic ideal of binary abstraction

(collab. with Columbia University)

Robust Features

To limit effectiveness of adversarial manipulation

(collab. with Avast Software s.r.o.)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Forecasting Future Drift

To proactively anticipate and adapt to concept drift

Problem-Space Backdoors

To identify classifier poisoning vulnerabilities

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Semantics Multitask Learning

Towards a Platonic ideal of binary abstraction

(collab. with Columbia University)

Robust Features

To limit effectiveness of adversarial manipulation

(collab. with Avast Software s.r.o.)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Core Team

Ph.D. Students

Mohamed

Jacopo

Mark

Current Research Collaborators

Imperial College London

UNIVERSITÀ DEGLI STUDI DI MILANO

der Bundeswehr Universität

Ph.D. Alumni

Feargus

Fabio Pierazzi

Technische Universität Braunschweig

Core Team

Ph.D. Students

Mohamed

Jacopo

Mark

Current Research Collaborators

Imperial College London

UNIVERSITÀ DEGLI STUDI DI MILANO

der Bundeswehr Universität

Ph.D. Alumni

Feargus

Fabio Pierazzi

Technische Universität Braunschweig

Core Team

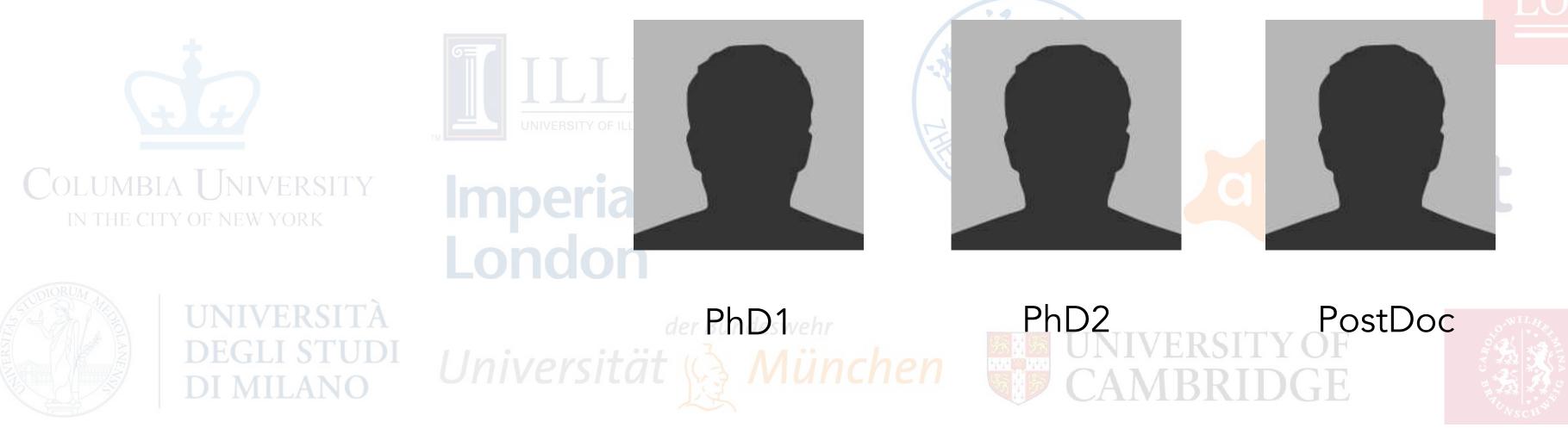
Ph.D. Students

Mohamed

Jacopo

Mark

Current Research Collaborators



Ph.D. Alumni

Feargus

Team-ups

Fabio Pierazzi

am hiring at UCL! :-)

Leading Innovation >>>

Forecasting Future Drift

To proactively anticipate and adapt to concept drift

Problem-Space Backdoors

To identify classifier poisoning vulnerabilities

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Semantics Multitask Learning

Towards a Platonic ideal of binary abstraction

Robust Features

To limit effectiveness of adversarial manipulation

(collab. with Avast Software s.r.o.)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

Forecasting Future Drift

To proactively anticipate and adapt to concept drift

Problem-Space Backdoors

To identify classifier poisoning vulnerabilities

(collab. with University of Illinois at Urbana-Champaign)

Experimental Pitfalls in ML for Security

To provide a solid foundation for empirical research

(collab. with TU Braunschweig) Dos and Don'ts of Machine Learning in Computer Security [USENIX Security 2022]

Trustworthy ML for **Systems Security**

Semantics Multitask Learning

Towards a Platonic ideal of binary abstraction

Robust Features

To limit effectiveness of adversarial manipulation

(collab. with Avast Software s.r.o.)

Universal Adversarial Perturbations

To identify classifier evasion vulnerabilities (collab. with Imperial College London and UniBw)

