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• Restricting feature-space perturbations  does not hinder problem-space attack δ
• App statistics (e.g., size) do not become anomalous after injection



Results: How much are app statistics affected?

• Adding all these features (+ side-effect features), what does it do to app statistics? 

› Limiting feature-space perturbations  does not affect problem-space attackδ
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Temporal Inconsistency in Train/Test Sets Violations use future knowledge in training

Kevin Allix et al. [ESSoS 2016]

Brad Miller et al. [DIMVA 2016]
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Higher % of malware in testing 
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Details: https://s2lab.kcl.ac.uk/projects/tesseract/poster-references.pdf

1. Large Representative Dataset with Timestamps

2. Reproducible State-of-the-Art Algorithms

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time  
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Dataset

• 129,729 Android applications from AndroZoo  

• 10% malware 

• Covering 3 years (2014 to 2016) 
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{good|mal}ware temporal consistencyC2
Realistic testing classes ratioC3
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10-fold (C3 enforced)
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Realistic Evaluations 
• Reveals performance in more realistic setting 

• Removes space-time experimental bias 

• Practitioners: Choose Best Solution 

• Researchers: Evaluate New Solutions

TESSERACT: Actionable Points

61



Realistic Evaluations 
• Reveals performance in more realistic setting 

• Removes space-time experimental bias 

• Practitioners: Choose Best Solution 

• Researchers: Evaluate New Solutions

TESSERACT: Actionable Points

61

Performance-Cost Trade Offs 
• Detection Performance (e.g., AUT F1) 

• Labeling Cost for retraining (e.g., manpower) 

• Quarantine Cost for rejection (e.g., low-
confidence decisions)

Rejection*                   Incremental Retraining                Active Learning
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Performance-Cost Trade Offs 
• Detection Performance (e.g., AUT F1) 

• Labeling Cost for retraining (e.g., manpower) 

• Quarantine Cost for rejection (e.g., low-
confidence decisions)

Rejection*                   Incremental Retraining                Active Learning

* [USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models 
* [IEEE S&P 2022] Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift 

https://s2lab.cs.ucl.ac.uk/projects/transcend

As well as measuring the overall effect 
of drift we can identify specific aspects 
of the drift and reject objects that are 
likely to be misclassified.



Revisiting Classification in the Presence of 
Concept Drift 



Revisiting Classification in the Presence of 
Concept Drift 

Covariate Shift: Change in feature distribution

Prior-probability Shift: Change in class base rate

Concept Drift: Change in ground truth definition

P(x ∈ X)

P(y ∈ Y )

P(y ∈ Y |x ∈ X)
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Example

Transcend at Test Time
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New 
Example
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New 
Example

[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models 
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Transcend at Test Time
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New 
Example

[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models 
https://s2lab.cs.ucl.ac.uk/projects/transcend/



Classification with Rejection
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Awesome!

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Classification with Rejection

67

Theoretical Understanding 
• Provide missing link with Conformal Prediction Theory 

• Motivate the effectiveness of Conformal Evaluation

Awesome!

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Classification with Rejection

67

Theoretical Understanding 
• Provide missing link with Conformal Prediction Theory 

• Motivate the effectiveness of Conformal Evaluation

Computational Optimizations 
• New, sound and more flexible Conformal Evaluators 
• Faster thresholding

Awesome!
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https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Classification with Rejection

67

Theoretical Understanding 
• Provide missing link with Conformal Prediction Theory 

• Motivate the effectiveness of Conformal Evaluation

Computational Optimizations 
• New, sound and more flexible Conformal Evaluators 
• Faster thresholding

Extensive Evaluation 
• Android, Windows PE and PDF malware 

• Different classifiers (SVM, RF, GBDT)

Awesome!

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Conformal Prediction and Evaluation

Conformal 
Evaluator

• CP theory lays foundation for CE 

• CPs outputs prediction sets with guaranteed confidence 1 - ε  

• CPs rely on two assumptions: 

• Exchangeability: Generalization of i.i.d. 

• Closed-world: Fixed label space

Conformal  
Predictor

68

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Conformal Prediction and Non-Conformity Measure (NCM)
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SVM Polynomial

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Conformal Prediction and Non-Conformity Measure (NCM)
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SVM Polynomial

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Conformal Prediction and Non-Conformity Measure (NCM)

69

SVM Polynomial
More dissimilar region

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Conformal Prediction and Non-Conformity Measure (NCM)

69

SVM Polynomial
More dissimilar region

Test point

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Conformal Prediction and Non-Conformity Measure (NCM)

SVM Polynomial SVM RBF 3NN Nearest Centroid

Random Forests QDA Neural Network 
(output activation)

Neural Network 
(last hidden layer  

w/ SVM RBF)
70



Conformal Prediction and Non-Conformity Measure (NCM)

SVM Polynomial SVM RBF 3NN Nearest Centroid

Random Forests QDA Neural Network 
(output activation)

Neural Network 
(last hidden layer  

w/ SVM RBF)
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Conformal Prediction vs Conformal Evaluation

{    }Ø {    ,    }

0 1
1 - max(p  , p )

0.68
(1 - p )
0.92
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Conformal Prediction vs Conformal Evaluation
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ε = 0

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Conformal Prediction vs Conformal Evaluation
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ε = 0ε = 1

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Conformal Prediction vs Conformal Evaluation
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ε = 0ε = 1 confidence1 - credibility

p-value of class  
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• Low credibility means high probability of an impossible result

Conformal Prediction vs Conformal Evaluation
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1 - max(p  , p )
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71

ε = 0ε = 1 confidence1 - credibility

• This means assumptions could have been violated — drift!

p-value of class  
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https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



• Low credibility means high probability of an impossible result

Conformal Prediction vs Conformal Evaluation

• Whereas CPs predict, CEs evaluate predictions using 

the same statistical tools as a signal for concept drift

{    }Ø {    ,    }

0 1
1 - max(p  , p )

0.68
(1 - p )
0.92

71

ε = 0ε = 1 confidence1 - credibility

• This means assumptions could have been violated — drift!

p-value of class  

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Transcend Calibration

0.2

0.4

0.6

0.8

1.0

0.0
Correct Incorrect Correct Incorrect

• How much drift is too much?  
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Rejection Cost
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• Actions for rejected points *: 

• Manual inspection 

• Downstream analysis 

• Quarantine 

• Exemption

Rejection Cost

74
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* [AISec 2021] Investigating Labelless Drift Adaptation for Malware Detection 
* [AISec 2021] INSOMNIA: Towards Concept-Drift Robustness in Network Intrusion Detection 



The Cost of Transductive Conformal Evaluators

• Underlying classifier retrained for every 

training point  

• Rooted in CP theory 

• Often computationally infeasible

Target of p-value computation

Remaining points 
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Approximate TCE

• First attempt to improve on the TCE 

• P-values computed in batches  

• Relies on unsound assumption

Target of p-value computation

Remaining points 
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Inductive Conformal Evaluator (ICE)

• Increase speed by splitting into  

training and calibration sets 

• Rooted in CP theory  

• Computationally efficient 

• Informationally inefficient 

Target of p-value computation

Remaining points 

Excluded points used for prediction but not evaluation
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Cross-Conformal Evaluator (CCE)

• Inspired by cross validation - multiple 

ICEs in parallel vote on evaluation 

• Rooted in CP theory  

• Computationally efficient 

• Informationally efficient 
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Experimental Setup

Android 
• DREBIN w/ ~260K apps (Jan 2014 - Dec 2018) 

• Linear SVM, binary feature space

79

Windows PE 
• EMBER v2 w/ ~117K apps (Jan 2017 - Dec 2017) 

• Gradient Boosted Decision Tree (GBDT)

PDF 
• Hidost w/ ~189k apps (Aug 2017 - Sep 2017) 

• Random Forest, features robust to drift

Thresholding Optimization 
• Constraints: minimum F1 of 0.9 for kept elements @ rejection rate < 15% 
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Our Open-Source Libraries

• Requested access by 120+ organizations, including (honorable mentions): 
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[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  

[USENIX Sec 2017 & IEEE S&P 2022] Transcend: Detecting Concept Drift in Malware Classification Models & 
Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift 
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Adversarial ML evasion attacks against malware classifiers 
• Classic formulation of evasion attacks is ill-suited for reasoning about realizable evasive malware 

• By reformulating, we can propose stronger attacks and easily compare against alternatives 
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