
AI and Side-channel analysis:
Lessons learned so far

International Winter School on Microarchitectural Security 2022
December 7, 2022

Lejla Batina

Institute for Computing and Information Sciences

Radboud University

lejla@cs.ru.nl

1

Outline

Intro to side-channel analysis

Side-channel Analysis (SCA) Attacks

SCA Countermeasures

Leakage evaluation

SCA and AI

Leakage emulation and Rosita

Screen Gleaning

2

Intro to side-channel analysis

Known challenge: embedded crypto devices

3

Implementation attacks

4

Relevance

November 13, 2019

May 28, 2020

October 3, 2019

January 7, 2021

5

Side-channel Analysis (SCA) Attacks

Greybox/Whitebox scenario

Cryptographic Device CiphertextPlaintext

Leakage

Greybox = SCA adversary in the wild:

I Crypto is implemented on a real device such as a microcontroller, FPGA, ASIC

I Adversary can measure and process physical quantities in the device’s vicinity

I Adversary’s goal: secret key or plaintext recovery by observing

plaintext/ciphertext pairs and a side channel

Whitebox = Security evaluator:

I Algorithms and implementation details are (partially) known

I Adversary’s goal: secret key or plaintext recovery by observing

plaintext/ciphertext pairs while trying all known attacks, including profiling

6

Power side-channel: Modeling the leakage

I The Hamming distance model counts the number of 0→ 1 and 1→ 0 transitions

I Example 1: Assume a hardware register R storing the result of an AES round.

The register initially contains value v0 and gets overwritten with value v1

I The power consumption because of the register transition v0 → v1 is related to

the number of bit flips that occurred

I Thus it can be modeled as HammingDistance(v0, v1) = HammingWeight(v0 ⊕ v1)

7

Power side-channel: Modeling the leakage

I Example 2: In a microcontroller, assume register A with value v0 and an assembly

instruction that moves the contents of register A to register B

mov rB, rA

I In general-purpose processors the instruction will transfer value v0 from register A

to B via the CPU, using the bus

I Often the bus is a very leaky component and also precharged to all bits to zeros

(or all to 1) i.e. busInitialValue

I The power consumption of the assembly instruction can be modeled as

HammingDistance(busInitialValue,v0) = HammingWeight(v0 ⊕ 0) = HW(v0)

8

Differential Power Analysis (DPA)

I The most popular side-channel attack

I Aims at recovering the secret key by using a large number of power

measurements (traces)

I Nowadays often combined/replaced with a leakage evaluation methodology such

as TVLA

9

Actual setups

DPA setup with ARM CortexM4

FA setup

Current Probe

Target XY-Table

EM-FI
Transient Probe

VC Glitcher

Picoscope

Tempest

FPGA board for SCA

10

SCA Countermeasures

Main idea

Goal: break the link between the actual data and power consumption

I Masking: power consumption remains dependent on the data on which

computation is performed but not the actual data

I Hiding: power consumption is independent of the intermediate values and of the

operations

11

Masking

Boolean masking: a dth-order (Boolean) masking scheme splits an internal sensitive

value v into d + 1 shares (v0, v1, ..., vd), as follows:

v = v0 ⊕ v1 ⊕ · · · ⊕ vd

Probing-secure scheme. We refer to a scheme that uses certain families of shares as

d−probing-secure iff any set of at most d intermediate variables is independent from

the sensitive values.

Consequently, the leakage of up to d values does not disclose any information to the

attacker.

12

Masking with 2 shares

I X = X1 ⊕ X2

I The leakage L(X) = HW (X1,X2) depends on two variables.

I It does not reveal info on the value of X when a DPA is performed, in theory

Masking in practice: unintended interactions between values in the processor cause

leakage in 1st order (caused often by transitional effects and glitches).

If a program that processes a secret value X contains two consecutive instructions

(the first uses X1 and the second uses X2), then the transitional effect of changing the

contents of the bus leaks the Hamming distance between X1 and X2.

13

Leakage evaluation

Independent Leakage Assumption (ILA) [RSVKF11]

Independent computations give rise to independent leakage.

Practically: The underlying assumption of this model is that the adversary can only

observe a single intermediate value with every probe used.

As a consequence: All masks (shares) need to be processed independently

Physical side-effects when implementing masking, such as glitches and distance-based

leakages, violate ILA in practice.

14

Test Vector Leakage Assessment (TVLA)

I Leakage assessment of a device is very important for the semiconductor and the

security evaluation industries

I Number of attacks to check the device’s resistance against keeps on growing

I Various attackers’ models possible but security evaluation often goes for the

strongest adversary

I It is using Welch’s t-test to differentiate between two sets of measurements, one

with fixed inputs and the other with random inputs

I Far from perfect, false positive and negatives are possible

I Leakage from combining multiple points is not detected

15

SCA and AI

AI for Side-channel Analysis (SCA): Why

I Machine learning for SCA was a natural direction:

• PCA to assist profiling/template attacks (dimensionality reduction)

• PCA for pre-processing measurement traces

• Machine Learning (ML)-based SCA distingushers

I Deep learning in SCA:

• neural nets for profiling attacks

• defeating countermeasures (e.g. skip the alignment phase)

• leakage assessment/simulators

• TEMPEST-like techniques e.g. screen gleaning

16

AI for SCA: When

Figure: Deep learning papers and datasets.

S. Picek, G. Perin, L. Mariot, L. Wu and L. Batina, SoK: Deep Learning-based

Physical Side-channel Analysis, https://eprint.iacr.org/2021/1092, accepted at

ACM Computing Surveys, 2022.

17

https://eprint.iacr.org/2021/1092

Leakage emulation and Rosita

Motivation

I Crypto implementations go through multiple cycles of leakage evaluation

I This procedure requires a lot of expertise and it is time consuming

I It can be improved by using leakage emulators

I Recently several emulators of the power consumption (or EM leakage) such as

Elmo were proposed

I The results of such emulations are combined with standard statistical tests such

as t-test

18

Previous work on leakage simulators and automatized approaches to SCA

I The most accurate simulators use SPICE

I Main difference is in emulating at the source code level (platform-independent)

and at machine instruction level (with a specific CPU in mind)

I Elmo [MOW17] is an instruction level emulator that uses power consumption

traces from real experiments to make better estimates

I Previous approaches can be divided into:

• simulation-based e.g. SILK (Veshchikov)

• using code analysis (Barthe et al.)

• hardware-assisted (implementing masking within a processor)

19

Rosita overview

 Simulation-based
 leakage analysis

ELMO*

Rule-based code
rewrite

Original cipher

Reduced-leakage
cipher

ROSITA

Assess any
remaining leakage
on real hardware

M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, Y. Yarom: Rosita: Towards

Automatic Elimination of Power-Analysis Leakage in Ciphers. NDSS 2021.

20

Elmo

I Elmo models 21 instructions divided into five groups

I Power traces are collected while the processor executes instruction triplets

I Each operand is compared to the corresponding operand of the preceding

instruction

I Each trace is processed to select a PoI as a representative of the trace

I Elmo then performs a linear regression on the data collected in the traces to find

the coefficients for the model

I Power consumption is modeled as linear combinations of bit values or bit changes

I Elmo is emulating leakage for the ARM Cortex-M0

21

Elmo*

I Elmo* is using the same STM32F0302 evaluation board with an ARM

Cortex-M0 and performs TVLA

I Elmo* also looks at combinations of bits across the two operands of an

instruction

I Introduces the concept of dominating instructions i.e. instruction pairs that

interact via hidden storage within the processor

I Elmo* finds which of the components of the model are causing the leak

22

Dominating instructions

This code sequence checks if str dominates eors.

If str dominates the eors, leakage will be visible at Line 9.

Basically, all instructions set some state, and most instruction pairs interact with this

state.

23

Instructions interactions

Triangles point to the dominating instruction. Circles indicate interactions on the

same storage.

24

Sources of leakage

I Registers: Overwriting a register leaks the (weighted) Hamming distance between

the previous value and the new value

I Memory: Writing data to memory interacts with data already stored in the same

location

I Instruction Pairs: All instructions set some state, and that most pairs do interact

with this state

I Memory Bus: The memory bus seems to have a storage element that stores the

most recent value stored to or loaded from the memory (leaking the Hamming

distance between the previous and the new value)

25

Rosita design

I First, leaky components are identified using Elmo*

I Main strategy is to wipe stored state with a random mask using a dedicates mask

register, which is initialized with a random 32-bit mask

I When t-test values suggests operand interaction, Rosita inserts an access to the

mask register

26

Fixing example

To fix interactions with the previous value used on the memory Rosita first stores the

mask register into the destination location and then performs the required store.

27

Evaluation setup

28

Results after fixing 3 different implementations

The slowdowns of the “fixes” for ChaCha, Xoodoo and AES are 61% (1 322 vs. 2 122

cycles), 18% (637 vs. 753 cycles) and 15% (1 285 vs 1 479).

29

Leakage reduction

30

Results of running Rosita on masked AES, ChaCha, and Xoodo

Cycles Leakage Points

Function Original Fixed Original Remaining

AES 1285 1479 31 0

ChaCha 1322 2162 238 1

Xoodoo 637 769 38 0

31

Contributions of Rosita

I A framework for generating 1st-order leakage-resistant implementations of

masked ciphers by iteratively rewriting the code at leakage points

I We first developed Elmo*, a leakage emulator that improves on Elmo

I We created Rosita, a code rewrite engine that uses Elmo*

I After “fixing” the original code with Rosita we show the absence of observable

leakage at 1 000 000 traces for AES and Xoodoo

I We show how Rosita can be used to automatically protect masked

implementations of AES and Xoodoo with overheads of less than 21%

32

Follow-up work

I Rosita extension on higher-order leakage → see Rosita ++

I Extending the leakage evaluation part to some other statistical tests

I Can we come up with some more generic approach for leakage emulation?

33

Summary

I Side-channel evaluation requires skilled evaluators performing complex and time

consuming procedures

I Leakage emulation is a very active area of research

I We show how to remove leakage by using Rosita’s code rewrites

I Results are evaluated using real hardware experiments

I Fixes are affordable wrt performance

I New directions in modeling the leakage: Abby simulator

34

References

Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers

Madura A. Shelton (University of Adelaide), Niels Samwel and Lejla Batina (Radboud

University), Francesco Regazzoni (University of Amsterdam and ALaRI – USI),

Markus Wagner (University of Adelaide), Yuval Yarom (University of Adelaide and

Data61). NDSS symposium, Feb. 21–25, 2021.

https://github.com/0xADE1A1DE/Rosita

Rosita ++: Automatic Higher-Order Leakage Elimination from Cryptographic Code

Madura A. Shelton (University of Adelaide), Lukasz Chmielewski and Niels Samwel

(Radboud University), Markus Wagner (University of Adelaide), Lejla Batina

(Radboud University), Yuval Yarom (University of Adelaide and Data61). ACM CCS

2021, Nov. 15–19, 2021.

35

https://github.com/0xADE1A1DE/Rosita

Leakage simulation is an active research area

SoK: Design Tools for Side-Channel-Aware Implementations: Ileana Buhan, Lejla

Batina, Yuval Yarom and Patrick Schaumont, ASIACCS 2022.

36

Screen Gleaning

TEMPEST: Cause and History

Oscillating electric currents create EM radiation in the RF range and those signal drive

the video display of various screens.

I Bell Labs noted this vulnerability for teleprinter communications during World

War II producing 75% of the plaintext being processed from a distance of 24m

I Van Eck phreaking: In 1985 published the first unclassified analysis of the security

risks of emanations from computer monitors using just 15$ equipment+TV set

I Van Eck phreaking was used to successfully compromise ballot secrecy for

electronic voting in Brazil

I NSA published TEMPEST Fundamentals in 1982 referring to spying on systems

through leaking emanations, including radio or el. signals, sounds and vibrations

I TEMPEST covers both methods to spy and to shield equipment against such

spying

37

Motivation and Outcomes

Motivation:

I TEMPEST attack is known for a long time but no methodology has been

established to evaluate it on mobile devices

I Using TEMPEST the adversaries can reconstruct the images displayed through

leaking emanations

In this work we:

I Introduce Screen Gleaning, a new electromagnetic TEMPEST attack targeting

mobile phones

I Demonstrate the attack and its portability to different targets using machine

learning

I Provide a testbed and parameterized attacker model for further research

38

Screen gleaning (Theory)

39

Screen gleaning (Practise)

The signal we observe is, in most cases, not interpretable to the human eye.

40

Attacker model: Motivating story and assumptions

Alice keeps her phone on a stack of magazines on her desk (face

down) to block the visual line of sight to the screen. Eve has

hidden an antenna under the top magazine to read the security

code via electromagnetic emanations of the phone.

I The set of symbols displayed on the phone is finite and known (digits 0-9)

I The attacker has access to a profiling device that is “similar” to the target device

I The attacker can collect electromagnetic traces from the target device

(representing the image displayed on the screen)

41

Attacker model: setup

I The target emits EM signal intercepted by an antenna connected to a

software-defined radio (SDR)

I The leaked information is collected and reconstructed as a gray-scale image

(emage)

I From emage, the 6-digit security code is cropped and fed into a CNN classifier for

recognition

42

Screen gleaning setup

43

The security code

Use of authentication code like to extract all digits.

I display code

I sample leakage

I analyze the leakage

I interpret the results

44

Security code results

Figure: Confusion matrix of the inter-session accuracy of the security.

Digits 0 1 2 3 4 5 6 7 8 9 All

Acc. (%) 87.2 86.8 97.4 75.8 99.1 97.4 95.1 93.1 82.5 86.1 89.8

Table: Accuracy with respect to different digits (0-9) and overall accuracy in our security code attack.

6 digits ≥ 5 digits ≥ 4 digits

Acc. (%) 50.5 89.5 99.0

Table: Accuracy of predicting partial security code correctly.

45

Security code results

I Attack on different phones of the same model
E.g., cross-device accuracy of 61.5%, where the classifier is trained and tested on two distinct

iPhone 6.

I Attack on different phone of different model
E.g., accuracy of 74.0% on Huawei Honor 6X.

I Attack at a greater distance (through a magazine)
E.g., accuracy of 65.8% on Huawei Honor 6X through 200 pages.

Z. Liu, Niels Samwel, L. Weissbart, Z. Zhao, D. Lauret, L. Batina, M. Larson, Screen

Gleaning: A Screen Reading TEMPEST Attack on Mobile Devices Exploiting an

Electromagnetic Side Channel, NDSS 2021.

46

Conclusions

I Screen gleaning is a new TEMPEST attack that uses an antenna and SDR to

capture an electromagnetic side channel, i.e., emanations leaking from a mobile

phone

I We demonstrated the effectiveness of it on three different phones with an

example of the recovery of a security code

I We introduced 5-dimension attacker model that can be extended further

I We proposed a testbed providing a standard setup in which screen gleaning can

be tested further with different attacker models

47

48

The end

Thank you for your attention!

https://cescalab.cs.ru.nl/

49

https://cescalab.cs.ru.nl/

	Intro to side-channel analysis
	Side-channel Analysis (SCA) Attacks
	SCA Countermeasures
	Leakage evaluation
	SCA and AI
	Leakage emulation and Rosita
	Screen Gleaning

