Transient execution attacks and
defenses

Formal models and provable security

Frank Piessens
MIC-SEC Winter school, Paris, Dec 2022

Introduction

* Transient execution attacks are a relatively new and a challenging class of
microarchitectural attacks

* My objective in this lecture is showing the value of the formal study of
these attacks and corresponding defenses

* Formal models can have several objectives:
* Simplifying a phenomenon to its bare essentials
* This is great for explaining attacks and defenses!

* Proving that a defense achieves a well-specified security objective under well-
specified assumptions

* This is great for increasing assurance that a defense works as advertised!

* This talk will illustrate both these things, but with a focus on the
explanation part

Overview

m) - System model

* Architectural isolation mechanisms for shared platforms
* Microarchitectural attacks
* A simple model

 Microarchitectural side-channel attacks
 Transient execution attacks
 Defenses

* Conclusions

System model: a shared platform

* A platform runs programs from multiple stakeholders
* |solation mechanism isolates these programs
* The platform supports communication between these programs

* Many systems are such shared platforms:
* Cloud
* Mobile
e Desktop

* A variety of isolation mechanisms is used to limit interference
between code from different stakeholders

Classic hierarchical OS protection

Process 1 Process 2 Process 3

Operating System

Hardware

Protecting the kernel: privilege levels

Process 1 Process 2 Process 3

OS is protected
from applications

o Operating System
by privilege level

Hardware

Protecting processes: virtual memory

Processes are protected from each other through memory isolation

Process 1 Process 2 Process 3

OS is protected

from .a;.)phcatlons Operating System
by privilege level

Hardware

Protecting critical software: enclaves

Processes are protected from each other through memory isolation

Enclaves are protected by memory isolation
m enforced by the hardware only
Process 1 Process 2 Process 3 ses
OS is protected

from applications
by privilege level

Operatmg System

Hardware

Fine-grained protection: software

Processes are protected from each other through memory isolation

Enclaves are protected by memory isolation

enforced by the hardware only

Process 1 Process 2 Process 3

Software can additionally enforce

more fine-grained protection:
Operating System Safe languages

e Safe VM’s

OS is protected
from applications
by privilege level

and can implement security
relevant checks such as bounds
checks

Architecture versus microarchitecture

* The Instruction Set Architecture (ISA) defines how the machine code of a
processor behaves

* Examples: x86, RISC-V, ARM, ...

 The ISA defines:

* Architectural state: memory, registers, ...
* Instruction semantics

* The microarchitecture is the way the ISA is implemented in a particular
processor

* Examples: single-cycle versus pipelined, in-order versus out-of-order, ...

 This can introduce additional state and behavior:

* Microarchitectural state: e.g., for performance improvements (caches, branch predictor state,
various CPU buffers, ...)

* Behavior: speculative execution, out-of-order execution, ...

11

Microarchitectural attacks

* Isolation mechanisms guarantee architectural isolation

* Microarchitectural attacks aim to break isolation by exploiting the fact
that the microarchitecture shares resources across isolation domains

Attacker Victim
Program Program

Shared microarchitectural resources:
caches, branch predictors, ...

processor

A simple Instruction Set Architecture (ISA) model

Register names
Talues

Expressions
Instructions

Programs

Example program:
ro 1< 2

beqz g 6

141+ 1
Jmp 0

Tl W N = O

12

r
v
e
1

ro < load|a + i
sum <— sum + 7y

S
S

Regs
N

vir|letele<e]...

r i€

r « load|e]
storele] «+ r
jmp e

beqz r v

i

;while (7 < 2) {

?
3
3
3

?

)

sum = sum + ali

1=1+1

(E.g., rg,r1.1,len. We assume pc & Regs)
(also represent addresses)

(boolean expressions return 0 or 1)
(assign value of e to r)

(load value at memory address e into r)
(store v in memory at address e)

(jump to code address €)

(branch to v if r evaluates to 0)

(non-empty list of instructions)

A simple Instruction Set Architecture (ISA) model

Register names r € Regs (E.g., rg,r1.1,len. We assume pc & Regs)
falues ©» € N (also represent addresses)
Expressions e == v|r|le+ele<e|... (boolean expressions return 0 or 1)
Instructions 1 = r+e | (assign value of e to r)
r « load|e] | (load value at memory address e into r)
storele] «+ r | (store r in memory at address e)
jmp e | (jump to code address €)
beqz r v (branch to v if r evaluates to 0)
Programs p = i (non-empty list of instructions)
Example program:
. . pc=0
0 ro 1 <2 ;while (i < 2) { Registers: Memory:
1 beqz g 6 : d 0
2 ro < loada +i] ; sum = sum + ali i 0
3 sum <— sum + 19 sum | 0
4 ¢ ie—i+1 =41
. r0 0
5 : jmpO0)

13

U W~ O

Base semantics

Register state
Memory state
Program counter
Program state

Program:

ro — 1< 2

beqz ry 6

ro < load[a + i]
sum <— sum + ry
141+ 1

jmp 0

Memory:

14

pc=0
a 0
[0
sum | O
r0 0
pc=2
a 0
[1
sum | 5
r0 1

P
m
pc

o

(mapping from register names to values)
(list of values)
(an index into the program)

€ Regs — Values
n= v
v

= (m, p,pc)

pc=1 pc=2
a 0 a 0
[0 [0
sum | O sum (O
rO 1 r0 1
pc=3 pc=4
a 0 a 0
[1 [1
sum | 5 sum | 9
ro 4 r0 4

pc=3
a 0
[0
sum (O
r0 5
pc=5
a 0
[2
sum |9
r0 4

pc=4
a 0
i 0
sum | 5
r0 5

pc=0
a 0
[2
sum |9
r0 4

pc=5
a 0
[1
sum |5
ro 5

pc=1
a 0
[2
sum | 9
ro 0

pc=0 pc=1
a 0 a 0
[1 [1
sum |5 sum |5
ro 5 ro 1
pc=6
a 0
[2
sum | 9
ro 0

Overview

e System model
* Architectural isolation mechanisms for shared platforms
* Microarchitectural attacks
* A simple model

* Microarchitectural side-channel attacks
* Transient execution attacks

* Defenses

* Conclusions

16

Architectural isolation

* We think of architectural state as securely partitioned
* Programs by different stakeholders are (architecturally) isolated from one

another
* At the level of abstraction of the ISA, no information leaks between ISA

programs of different stakeholders

Attacker Victim
Program, Program,
Memory, Memory,

Registers s I Registers

Shared microarchitectural resources:
caches, branch predictors, ...

Modeling classic microarchitectural side-
channels

 Attackers running code on the same platform can learn information

about the execution of victim code

* For instance, attackers can learn:
* Program control flow, for instance by a cache attack on code memory
* Addresses of data memory accesses, for instance by a cache attack on data memory
* We model this by assuming a leakage model that specifies what can

leak to an attacker at each execution step
» See, for instance: Almeida et al., Verifying Constant-Time Implementations,

USENIX Security 2016

U W~ O

The constant time leakage model

* Extend base semantics to specify what leaks at each step:

Program:

ro — 1< 2

beqz ry 6

ro < load[a + i]
sum <— sum + ry
141+ 1

jmp 0

Memory:

18

pc=0

a 0
[0
sum | O
r0 0
pc=2

a 0
[1
sum | 5
r0 1

pc=1

d

sum

ro

| O|O|O

access @1

pc=3

a

sum

ro

AU | |O

pc=2
a 0
[0
sum | O
r0 1
pc=4
a 0
[1
sum | 9
r0 4

access @0

pc=3

a

sum

ro

| o|lO | O

pc=5

sum

ro

~A|lO I N|O

pc=4
a 0
i 0
sum | 5
r0 5

pc=0
a 0
[2
sum |9
ro 4

pc=5
a 0
i 1
sum | 5
r0 5

pc=1
a 0
i 2
sum |9
r0 0

pc=0 pc=1
a 0 a 0
i 1 i 1
sum | 5 sum |5
r0 5 r0 1
pc=6
a 0
i 2
sum | 9
r0 0

Leak gadgets

* In later attacks, we rely on code snippets that leak values through a
microarchitectural side-channel
* A wide variety of such snippets exist

* In some scenarios, the attacker can construct them, in other scenarios the
attacker must find them in victim code

* To make it obvious that some information leaks, we use the macro:

leak secret dummy < load|secret|

(where secret is the name of a register containing a value to be leaked, and dummy is an
otherwise unused register)

Overview

e System model
 Microarchitectural side-channel attacks

* Transient execution attacks
* Out-of-order and speculative execution
* Spectre attacks

* Defenses
 Conclusions

Out-of-order and speculative execution

* Transient execution attacks exploit processor features called out-of-
order and speculative execution

* The basic idea is:

* Rather than executing one instruction at a time, fetch many instructions into
a buffer of in-flight instructions

e Execute instructions from this buffer, possibly out-of-order
* This avoids having to wait while, for instance a slow memory load is happening

e Commit the effect of the instructions to the architectural state in order

* Prediction and speculation are used to speed things up
* For instance, fetching instructions beyond a branch requires prediction

U= W o —= O

22

Out-of-order and speculative execution

14 2+2

n « load[12]
o1 <n
beqz r9 5
144 x1

In-flight instructions f
Reorder buffer rob
Program state o

pc=0
i 0
n 0
rO (O
rob

1+—1+1

r<e
r < load|e]

pC — v

Qu : pc v
Qu:r<+w

(m, p, pc, rob)

|
|
storele] « 7 |
|
|

pc=0
[0
n 0
rO |0

rob | ;249
n < load[12]

Tog$—1<1n

(non-speculated jump becomes pc assignment)

(speculated jump, v is address of original instruction)
(speculated load, v is address of original instruction)

pc=1

pc=0

[0

n 0

ro 0

rob 144
n < load[12]
rg—1<n

ro

pc=1
[4
n 0
rO |0
rob | » « load[12]

To—1<n

rob

n < load[12]
Tog 1< n
@3 :pc+ 5

0 : i+ 2+2 pc=1 pc=1 pc=1 pc=3 pc=4
1 + load|12
n < load[12] | 4 i 4 i 4 i 4 i 4
2 ro+—1<n
3 beqz T0 5 n n N n n
4 144 x1
5 i—i+1 ro 0 ro 0 ro 0 ro 1 ro 1
rob n load[12] rob n < load[12] rob n+<7 rob @3 :pc+5 rob
?"_0<—3'<'n To—1<n o < 1 14D
@3 :pc 5 @3 :pc <5 @3 :pc<+ 5
14— 1+1 14D 749
incorrect
prediction
c=1 c=1 c=1 c=3 c=6
correct P P i i P
prediction | 4 l 4 I 4 I 4 i 17
n 0 n 0 n n n 7
ro |0 r0O |0 ro |0 ro 1 ro 1
rob | n < load[12] rob | n <« load[12] rob n<« T rob @3 : pc <+ 4 rob
?_"_0<—z'<-n, rog4—i<n To < 1 i+ 16
@3 : pc <+ 4 @3 : pc 4 @3 : pc 4 i+ 17
144 x1i i+ 16 14— 16
141+ 1 i+ 17 i+ 17

23

Predictions and scheduling

* The semantics requires the processor to make choices, for instance
for predicted values
* These happen based on heuristics and observing past behavior

* Hence, they can also be influenced by an attacker
* E.g., “training the branch-predictor”

e How should we model this influence of the attacker?

U= W o —= O

pc=0 pc=0 pc=0 pc=1
D242 i 0 i 0 [0 [4 [
: n + load|[12]
D o rg i< n n 0 n 0 n 0 n 0 n
vt e o [0 o 0 o 0 [0 °
poie it rob rob | ;9.0 rob | ;. 4 rob | n < load[12] rob
n < load[12] n < load[12] ro1<n
To—1<n rp<1<n
fetch fetch 4 fetch (predict taken)
execute 0 commit fetch (predict not taken)

25

Attacker influence on the execution

* Prediction and scheduling choices can be done by the attacker within constraints
defined in the semantics, e.g.:
* Fetch is only possible if the reorder buffer has room
e Executing an instruction in the reorder buffer is only possible if its dependencies are satisfied

 Commit is only possible for the oldest instruction in the reorder buffer, and only after it has
fully executed

pc=1

n <+ load[12]
ro1<n
@3 :pc+ 5

execute 1 execute 0

execute 1

Transient execution attacks

* We have seen that instructions can execute transiently

* This impacts security in two ways:

* Transiently executed instructions can also leak information to the attacker
* On rollback, architectural effects are discarded, but microarchitectural effects remain
* Transiently executed instructions can access information expected to be
inaccessible
* Because the information is protected by software -> “Spectre”-style attacks
* Because itis in another hardware protection domain -> “Meltdown”-style attacks
* For this talk, we focus just on Spectre-style attacks
* These are the hardest to defend against efficiently

Spectre examples

* We will discuss a couple of Spectre examples

* In each example:
* There is code operating in a program state containing secrets

* According to the base ISA semantics, the code does not leak these secrets
* Even taking into account the constant time leakage model

* Yet, because of speculation and out-of-order execution, the secrets do leak

Example 1: Spectre v1 (Spectre-PHT)

28

0 len < load[a — 1] ; assume length field stored before array Memory:
1 o 1 < len
2 beqz 19 5 f(i < len){
3 ro < load|a +] ro = ali
4 leak rg : leak(rg
5 1
access @3 access @1234
pc=0 pc=0 pc=0 pc=0
a 1 a 1 a 1 a 1
len |0 len | 0 len |0 len |0
[2 [2 [2 [2
rO |0 « |r0O |0 «|r0 |0 rO |0
— —
rob rob | ien < loadfa — 1] rob | ien < loadfa — 1] rob | jen « loadfa — 1]
ro <1 < len ro <1 <len o 1 < len
@2 : pe 3 @2: pc <+ 3 @2: pc<+ 3
ro < load[a + 1] ro 1234 o 1234
dummy <+ load|[r] dummy < load|ro] dummy + 0

1234: (O
3: 1234
2: 5
a: | 1: 3
len: | O: 2
_

Example 2: Spectre v2 (Spectre-BTB)

0 ro +— load|T]
1 fptr + load|8]
2 jmp fpir
20 g +—]
21 jmp 3
31 leak rg
pc=0
fptr | O
ro 0
rob

ro + load|7]

fptr «+ load|8]

@2 : pe +— 31
dummy + load [rg|

29

s load a secret into rg
:load a "function pointer” to a trusted function
; call trusted function that safely accesses secret

; trusted function just clears secret

access @3
pc=0

Memory:

access @1234
pc=1

1234: (O

8: 20
7: 1234
0: 0

fptr

0

fptr | O

ro

0

ro 0

rob

ro — 1234

[ptr + load|8]

a2 : pe + 31
dummy + load|rg)

pc=1
fptr | O
ro 1234
rob

fptr «+ load|8]
a2 : pe +— 31
dummy + load[ry]

rob fptr « load|8]
@2 : pe +— 31
dummay < 0

Example 3: Spectre v4 (Spectre-STL)

; overwrite the secrel with (
; load address 7 into ry, should read 0

Memory:

; Suppose memory address 7 contains the secrel 1234, that is currently cached

access @1234

0 g < 0
1 store[4d + 3] + 1
2 ry < load|[7]
3 leak r;
pc=0
r0 0
rob To < 0

store[4 + 3] < 1q
r1 < load|7]
dummy + load[r|

pc=1
r0O |0
rob |storeld+ 3|« g

ry < load[7]
dummy < load|r]

access @7
pc=1

ro 0

rob |[store[d+ 3]« ry

@2 :7r + 1234
dummy < load[r]

pc=1
ro (0
rob |store[d+ 3|+« 1

Q@2 :ry + 1234
dummy + 0

30

1234: (O
7: 1234
0: 0

Spectre-PHT (aka Spectre v1)

Transient execution attacks o0
40

) Th €5€ were a cou p | € Of sim pl IfIEd Kocher et al. first introduced Spectre-PHT, an attack that poisons the
S p e Ct re atta C kS Pattern History Table (PHT) to mispredict the direction (taken or not-

. . . taken) of conditional branches. Depending on the underlying
e See htt pS//t ransient.fai I/ for more variants microarchitecture, the PHT is accessed based on a combination of

a nd more deta | IS virtual address bits of the branch instruction plus a hidden Branch
History Buffer (BHB) that accumulates global behavior for the last N

* Note that our simplifications make the | Prenchesenthesamephysicalcore
attacks look simpler than they are.

References
g DOl ng th ese atta Cks onrea I Syste m req uilres o A Systematic Evaluation of Transient Execution Attacks and Defenses
. . o . Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg,
a Slgn |f| Ca nt a m O u nt Of expe rtlse Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss (USENIX Security
2079)

o Spectre Attacks: Exploiting Speculative Execution
Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, Yuval Yarom (/EEE S&P 2019)

o BranchScope: A New Side-Channel Attack on Directional Branch Predictor
Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, Dmitry Ponomarev (ASPLOS
2018)

31 o The microarchitecture of Intel, AMD and VIA CPUs

Agner Fog

https://transient.fail/

Overview

e System model
 Microarchitectural side-channel attacks

* Transient execution attacks
* Out-of-order and speculative execution
* Spectre attacks

* Defenses
 Conclusions

Defenses

e Defenses against transient execution attacks are being investigated at
multiple levels:
* Hardware fixes
* For instance, do not forward values from faulting loads to subsequent instructions

e Operating system level fixes
* Forinstance, do not place the kernel in the same virtual address space as user code

* Compiler level fixes

* Forinstance, insert instructions to stop out-of-order execution, or rewrite code to
remove the vulnerability

* We focus on defenses against Spectre attacks

Security objective of defenses

* Microarchitectural side-channel attacks and transient execution attacks
cause unexpected information leaks

* The security objective of a defense depends on how much program state
we actually want to keep secret

* We define a policy as an equivalence relation over program states

* The intuition is that the policy relates states that should be indistinguishable to an
attacker. Typically, one defines a policy by marking secrets, and two states are
equivalent if they only differ in secrets.

* A program P is secure on hardware H if executing P on H starting from any
two ekquwalent initial states will produce identical observations for the
attacker

» Security can be achieved by software mitigations, or by hardware mitigations, or by a
combination of both

Reconsider the Spectre vl example:

35

0 len < load[a — 1] ; assume length field stored before array Memory:
1 o 1 < len
2 beqz 19 5 f(i < len){
3 ro < load|a +] ro = ali
4 leak rg : leak(rg
5 1
access @3 access @1234
pc=0 pc=0 pc=0 pc=0
a 1 a 1 a 1 a 1
len |0 len | 0 len |0 len |0
[2 [2 [2 [2
rO |0 « |r0O |0 «|r0 |0 rO |0
— —
rob rob | ien < loadfa — 1] rob | ien < loadfa — 1] rob | jen « loadfa — 1]
ro <1 < len ro <1 <len o 1 < len
@2 : pe 3 @2: pc <+ 3 @2: pc<+ 3
ro < load[a + 1] ro 1234 o 1234
dummy <+ load|[r] dummy < load|ro] dummy + 0

1234: (O
3: 1234
2: 5
a: | 1: 3
len: | O: 2
_

A hardened version of the program is secure:

36

1234: (O
3: 1234
2: 5
1: 3
0: 2

0 len < load[a — 1] ; assume length field stored before array
1 rg 1 < len Memory:
2 beqz o 6 Jif(i < len){
3 i < 1 /0 len ' 1 =1 % len
4 ro < load[a + i] ro = ali
5) leak 1 ; leak(rg)
6 !
access @0 access @1 access @3
pc=0 pc=0 pc=0 pc=0
a 1 a 1 a 1 a 1
len | O len | O len | O len | O
i 2 i 2 i 2 i 2
rO (O « |0 |0 rO (O rO (O
—_—
rob | len < load[a — 1] rob | len + 2 rob | len <2 rob | len + 2
ro < 1 < len ro < 1 < len ro <1 < len rog 1 < len
@2:pc+3 @2:pc+ 3 @2 : pc <+ 3 @2 :pc«+ 3
i1 % len i< 0 i+ 0 i+ 0
ro < load[a + i ro < load|a + i ro < 3 o +— 3
dummy < load|ro] dummy < load|rg] dummy < load|r] dummy <+ 1234

Hardening with speculation barriers

; assume length field stored before array

pc=0

Memory:

1

len

0

2

ro

0

0 len < load[a — 1]
1 rog 1 < len
2 beqz ry 6 ;if(2 < len){
3 fence '
4 ro + load[a + 1] ro = alil
5 leak rg ; leak(rg)
6 ;)
access @0
pc=0 pc=0
a 1 a 1
len | O len | O
[2 [2
rO [0 r0O (0
rob | len < load[a — 1] rob | len < 2

ro — 1 < len

@2 : pc « 3

fence

ro + load[a + i
dummy < load|r]

ro 1 <len

@2 : pc+ 3

fence

ro + load[a + i
dummy + load[r¢]

rob

len «+ 2

19 0

@2 : pc < 3
fence

ro < load[a + i

dummy < load|rg]

rob

37

1234: (O
3: 1234
2: 5
a: | 1: 3
len: | O: 2
_

A provable defense based on our models

* Let us now show the value of the models by designing a provably
secure system

* Joint work (under submission) with L. Daniel, M. Bognar, J. Noorman, S.
Bardin, T. Rezk

* The basic idea is:
e Software will have to be secure under the constant-time model

* Hardware will track secrets and stall speculative execution only when secrets
could leak

* Together, these two mitigations lead to an efficient and provably secure
system

. 1234:
Illustrating the defense on Spectre v1
0 : len < load[a — 1] ; assume length field stored before array Memory: 3:
1 : rg+1<len .
2 : beqzrob f(i < len){ 2:
3 : 719+« loadla + i ; ro = alil a: | 1:
4 : leak rg : leak(rg)
5) len: | O:
pc=0
a 1
len | O
| 2
ro 0 *
—
rob

39

Illustrating the defense on Spectre v1

. len < load[a — 1]

—_—
hd

1 : rg+1<len
2 : beqz g
3 : 1o« loada + i]
4 : leak ry
.
pc=0

a 1

len |0

[2

ro 0 *

—’
rob

40

)

;. assume length field stored before array

f(i < len){
ro = alil
leak(rg)

Code should be constant-time

1234: | O
Memory: 3: 1234
2: 5
a: | 1: 3
len: | O: 2

Memory should be partitioned in public/secret

Illustrating the defense on Spectre v1

len < load[a — 1] ; assume length field stored before array

0
1 o 1 < len
2 beqz 19 5 ;if(i < len){
3 ro < loadla+1i] ; 7o =ali
4 leak rg : leak(rg)
5 i}
pc=0 pc=0

a 1 a 1

len |0 len | 0

[2 [2

rO |0 « |r0O |0

— —
rob rob | ien « load|a — 1]

rg 1 < len

@2 :pc+ 3

ro < load[a + 1]
dummy <+ load|[r]

41

access @3
pc=0

1

len

0

2

ro

0

rob

len < load|a — 1]
o 1 < len

@2 :pc+ 3

o +— 1234

dummy « load[rg

1234: | O
Memory: 3: 1234
2: 5
a: | 1: 3
len: | O: 2

Microarchitecture should track secret
taint, ...

., and block speculative execution of
leaky instructions that depend on secrets

Illustrating the defense on Spectre v1

42

0 len < load[a — 1] ; assume length field stored before array Memory:
1 o 1 < len
2 beqz 19 5 f(i < len){
3 ro < load|a +] , ro = alil
4 leak rg : leak(rg)
5 i}
access @3
pc=0 pc=0 pc=0 pc=6
a 1 a 1 a 1 a 1
len | O len | O len | O len |2
[2 [2 [2 [2
roO |0 « |r0 |0 roO |0 rO |0
— —
rob rob | ien < loadfa — 1] rob | ien + loadfa — 1] rob
rg 1 < len o 1 < len
@2 :pec+ 3 @2:pc+3
ro < load|a + i ro 1234
dummy <+ load|[r] dummy « load[rg

1234: (O
3: 1234
2: 5
a: | 1: 3
len: | O: 2
_

43

The formal model

We consider two security labels: L (low, public) and H (high,
secret). Program states are of the form (m, r,buf,u) where:

* m is a memory, mapping addresses to values, and ad-
dresses are statically labeled as being L or H.

* ris aregister map, mapping register names (including
pc) to a value paired with a security label,

* buf is a reorder buffer, and

* uis the microarchitectural context that the attacker can
observe/influence. The attacker provides an initial g,
and provides:

— update, which is called with anything the attacker
might observe;

— predict, which allows the attacker to control pre-
diction/speculation;

— next, which allows the attacker to choose the next
processor step to execute.

STEP

u' = update(r,m|y, vl | buf L)
d = next(u') {m,r, b”f'aﬁf{)? (o' buf')

(m,r,buf,u)— <m’? v, buf"?p”>

FETCH-PREDICT-BRANCH-JMP
(l:—) = [[pc]]api(buf.,r)
P[1] € {begz e _, jmp e} 1" £ predict(u)

(m,r, bu]‘}y)m (m.r,buf -pc <« (1":1L) @1, u)

44

Example of an end-to-end theorem

» Suppose that the software:
e Labels memory addresses
* |s constant-time (does not leak secrets into control flow or addresses)
* Does not declassify secrets

* Then, execution of that software on the modeled processor does not leak secrets

do the attacker.

Theorem 1 (Security for constant-time programs.). Let P be
a constant-time program that does not declassify secret data.
For all number of steps n, memories mg,nj,, register maps
ro. r{), and microarchitectural state uy,

mo|L = mg|L ArolL = 1| A
(mo,ro, €, up)—" (my, rp.bufy,) =

. ny 1o/ g o
<”/"'U=r()'-8:#(}>_> <mn:"nrbl‘i.fmﬂn> N Hp = Wy,

Discussion

* Security:
* This theorem covers all the variants of Spectre we discussed and more

* The conditions on the software are realistic:
* Cryptographic software is already complying with the constant-time model today
e (Compiler will still need to make sure that memory addresses are labeled correctly)

* The conditions on the hardware are realistic:
* We have an implementation on an out-of-order RISC-V showing low hardware cost

* Performance:
* If everything is public, no performance penalty is incurred
* If software is constant-time, only mis-speculations stall the pipeline

e Under other conditions, performance cost grows as there are (1) more secrets, (2)
used in computations that benefit from speculation

Overview

e System model

* Microarchitectural side-channel attacks
* Transient execution attacks

* Defenses

m) - Conclusions

Conclusions

* Transient execution attacks are a fundamentally new class of attacks:

* That break many important security mechanisms
* That are not easy to defend against

* Short-term defenses have been useful but ad-hoc

* Long-term defenses are the subject of current research
* Pure software defenses against Spectre will remain important for the foreseeable
future and are the subject of active research.

* For arecent survey, see:
e Cauligi et al., SoK: Practical Foundations for Software Spectre Defenses, IEEE S&P 2022

* Hardware/software co-designs can offer better security/performance trade-offs

* Excellent starting point for reading more: T
* Guarnieri et al., Hardware/software contracts for secure speculation, IEEE S&P 2021

