
Transient execution attacks and 
defenses

Formal models and provable security

Frank Piessens

MIC-SEC Winter school, Paris, Dec 2022

1



Introduction

• Transient execution attacks are a relatively new and a challenging class of 
microarchitectural attacks

• My objective in this lecture is showing the value of the formal study of 
these attacks and corresponding defenses

• Formal models can have several objectives:
• Simplifying a phenomenon to its bare essentials

• This is great for explaining attacks and defenses!

• Proving that a defense achieves a well-specified security objective under well-
specified assumptions
• This is great for increasing assurance that a defense works as advertised!

• This talk will illustrate both these things, but with a focus on the 
explanation part

2



Overview

• System model
• Architectural isolation mechanisms for shared platforms

• Microarchitectural attacks

• A simple model

• Microarchitectural side-channel attacks

• Transient execution attacks

• Defenses

• Conclusions

3



System model: a shared platform

• A platform runs programs from multiple stakeholders
• Isolation mechanism isolates these programs

• The platform supports communication between these programs

• Many systems are such shared platforms:
• Cloud

• Mobile

• Desktop

• A variety of isolation mechanisms is used to limit interference 
between code from different stakeholders



Classic hierarchical OS protection

5

Hardware

Operating System

Process 1 Process 2 Process 3 …



Protecting the kernel: privilege levels

6

Hardware

Operating System

Process 1 Process 2 Process 3 …

OS is protected
from applications
by privilege level



Protecting processes: virtual memory

7

Hardware

Operating System

Process 1 Process 2 Process 3 …

OS is protected
from applications
by privilege level

Processes are protected from each other through memory isolation 



Protecting critical software: enclaves

8

Hardware

Operating System

Process 1 Process 2 Process 3 …

OS is protected
from applications
by privilege level

Processes are protected from each other through memory isolation 

Enclave

Enclaves are protected by memory isolation 
enforced by the hardware only



Fine-grained protection: software

9

Hardware

Operating System

Process 1 Process 2 Process 3 …

OS is protected
from applications
by privilege level

Processes are protected from each other through memory isolation 

Enclave

Enclaves are protected by memory isolation 
enforced by the hardware only

Software can additionally enforce
more fine-grained protection:
• Safe languages
• Safe VM’s 
• WebAssembly
• …
and can implement security 
relevant checks such as bounds 
checks



Architecture versus microarchitecture

• The Instruction Set Architecture (ISA) defines how the machine code of a 
processor behaves
• Examples: x86, RISC-V, ARM, …
• The ISA defines:

• Architectural state: memory, registers, …
• Instruction semantics

• The microarchitecture is the way the ISA is implemented in a particular 
processor
• Examples: single-cycle versus pipelined, in-order versus out-of-order, …
• This can introduce additional state and behavior:

• Microarchitectural state: e.g., for performance improvements (caches, branch predictor state, 
various CPU buffers, …)

• Behavior: speculative execution, out-of-order execution, …

10



Microarchitectural attacks

• Isolation mechanisms guarantee architectural isolation

• Microarchitectural attacks aim to break isolation by exploiting the fact 
that the microarchitecture shares resources across isolation domains

11

processor

Victim
Program

Attacker
Program

Shared microarchitectural resources:
caches, branch predictors, …



A simple Instruction Set Architecture (ISA) model

Example program:

12



A simple Instruction Set Architecture (ISA) model

Example program:

13

Memory:
a 0

i 0

sum 0

r0 0

pc=0
Registers:

…

1: 4

0: 5



Base semantics

Program:

Memory:

a 0

i 0

sum 0

r0 0

pc=0

a 0

i 0

sum 0

r0 1

pc=1

a 0

i 0

sum 0

r0 1

pc=2

a 0

i 0

sum 0

r0 5

pc=3

a 0

i 0

sum 5

r0 5

pc=4

a 0

i 1

sum 5

r0 5

pc=5

a 0

i 1

sum 5

r0 5

pc=0

a 0

i 1

sum 5

r0 1

pc=2

a 0

i 1

sum 5

r0 4

pc=3

a 0

i 1

sum 9

r0 4

pc=4

a 0

i 2

sum 9

r0 4

pc=5

a 0

i 2

sum 9

r0 4

pc=0

a 0

i 2

sum 9

r0 0

pc=1

a 0

i 2

sum 9

r0 0

pc=6

…

1: 4

0: 5

a 0

i 1

sum 5

r0 1

pc=1

14

…



Overview

• System model
• Architectural isolation mechanisms for shared platforms

• Microarchitectural attacks

• A simple model

• Microarchitectural side-channel attacks

• Transient execution attacks

• Defenses

• Conclusions

15



Architectural isolation

• We think of architectural state as securely partitioned
• Programs by different stakeholders are (architecturally) isolated from one 

another

• At the level of abstraction of the ISA, no information leaks between ISA 
programs of different stakeholders

Victim
Program,
Memory,
Registers

Attacker
Program,
Memory,
Registers

Shared microarchitectural resources:
caches, branch predictors, …

16



Modeling classic microarchitectural side-
channels
• Attackers running code on the same platform can learn information 

about the execution of victim code
• For instance, attackers can learn:

• Program control flow, for instance by a cache attack on code memory

• Addresses of data memory accesses, for instance by a cache attack on data memory

• We model this by assuming a leakage model that specifies what can 
leak to an attacker at each execution step
• See, for instance: Almeida et al., Verifying Constant-Time Implementations, 

USENIX Security 2016

17



• Extend base semantics to specify what leaks at each step:

The constant time leakage model

Program:

Memory:

a 0

i 0

sum 0

r0 0

pc=0

a 0

i 0

sum 0

r0 1

pc=1

a 0

i 0

sum 0

r0 1

pc=2

a 0

i 0

sum 0

r0 5

access @0
pc=3

a 0

i 0

sum 5

r0 5

pc=4

a 0

i 1

sum 5

r0 5

pc=5

a 0

i 1

sum 5

r0 5

pc=0

a 0

i 1

sum 5

r0 1

pc=2

a 0

i 1

sum 5

r0 4

access @1
pc=3

a 0

i 1

sum 9

r0 4

pc=4

a 0

i 2

sum 9

r0 4

pc=5

a 0

i 2

sum 9

r0 4

pc=0

a 0

i 2

sum 9

r0 0

pc=1

a 0

i 2

sum 9

r0 0

pc=6

…

1: 4

0: 5

a 0

i 1

sum 5

r0 1

pc=1

18

…



Leak gadgets

• In later attacks, we rely on code snippets that leak values through a 
microarchitectural side-channel
• A wide variety of such snippets exist

• In some scenarios, the attacker can construct them, in other scenarios the 
attacker must find them in victim code

• To make it obvious that some information leaks, we use the macro:

(where secret is the name of a register containing a value to be leaked, and dummy is an 
otherwise unused register)

19



Overview

• System model

• Microarchitectural side-channel attacks

• Transient execution attacks
• Out-of-order and speculative execution

• Spectre attacks

• Defenses

• Conclusions

20



Out-of-order and speculative execution

• Transient execution attacks exploit processor features called out-of-
order and speculative execution

• The basic idea is:
• Rather than executing one instruction at a time, fetch many instructions into 

a buffer of in-flight instructions

• Execute instructions from this buffer, possibly out-of-order 
• This avoids having to wait while, for instance a slow memory load is happening

• Commit the effect of the instructions to the architectural state in order

• Prediction and speculation are used to speed things up
• For instance, fetching instructions beyond a branch requires prediction

21



Out-of-order and speculative execution

i 0

n 0

r0 0

rob

pc=0

*

22

i 0

n 0

r0 0

rob

pc=0

i 0

n 0

r0 0

rob

pc=0

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1



* * *

* * * *

correct
prediction

incorrect
prediction

23

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

i 4

n 7

r0 1

rob

pc=3

i 4

n 7

r0 1

rob

pc=3

i 17

n 7

r0 1

rob

pc=6

i 4

n 7

r0 1

rob

pc=4



Predictions and scheduling

• The semantics requires the processor to make choices, for instance 
for predicted values
• These happen based on heuristics and observing past behavior

• Hence, they can also be influenced by an attacker
• E.g., “training the branch-predictor”

• How should we model this influence of the attacker?

24



Attacker influence on the execution

• Prediction and scheduling choices can be done by the attacker within constraints 
defined in the semantics, e.g.:
• Fetch is only possible if the reorder buffer has room
• Executing an instruction in the reorder buffer is only possible if its dependencies are satisfied
• Commit is only possible for the oldest instruction in the reorder buffer, and only after it has 

fully executed

25

i 0

n 0

r0 0

rob

pc=0

*

i 0

n 0

r0 0

rob

pc=0

i 0

n 0

r0 0

rob

pc=0

i 4

n 0

r0 0

rob

pc=1

i 4

n 0

r0 0

rob

pc=1

fetch

fetch
execute 0
execute 1

fetch
commit
execute 1

fetch (predict taken) 
fetch (predict not taken)
execute 0



Transient execution attacks

• We have seen that instructions can execute transiently

• This impacts security in two ways:
• Transiently executed instructions can also leak information to the attacker

• On rollback, architectural effects are discarded, but microarchitectural effects remain

• Transiently executed instructions can access information expected to be 
inaccessible
• Because the information is protected by software -> “Spectre”-style attacks

• Because it is in another hardware protection domain -> “Meltdown”-style attacks

• For this talk, we focus just on Spectre-style attacks
• These are the hardest to defend against efficiently

26



Spectre examples

• We will discuss a couple of Spectre examples

• In each example:
• There is code operating in a program state containing secrets

• According to the base ISA semantics, the code does not leak these secrets
• Even taking into account the constant time leakage model

• Yet, because of speculation and out-of-order execution, the secrets do leak

27



Example 1: Spectre v1 (Spectre-PHT)
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

28

pc=0

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @1234
pc=0

…

len:



Example 2: Spectre v2 (Spectre-BTB)
Memory:

1234: 0

… …

8: 20

7: 1234

… …

0: 0

pc=0

fptr 0

r0 0

rob

*

29

pc=1
access @3
pc=0

access @1234
pc=1

…

fptr 0

r0 0

rob

*

fptr 0

r0 1234

rob

*

fptr 0

r0 0

rob

*



Example 3: Spectre v4 (Spectre-STL)
Memory:

1234: 0

… …

7: 1234

… …

0: 0

pc=0

r0 0

rob

*

30

pc=1
access @7
pc=1

access @1234
pc=1

…

r0 0

rob

*

r0 0

rob

*

r0 0

rob

*



Transient execution attacks

• These were a couple of simplified
Spectre attacks
• See https://transient.fail/ for more variants 

and more details

• Note that our simplifications make the 
attacks look simpler than they are. 
• Doing these attacks on real system requires 

a significant amount of expertise

31

https://transient.fail/


Overview

• System model

• Microarchitectural side-channel attacks

• Transient execution attacks
• Out-of-order and speculative execution

• Spectre attacks

• Defenses

• Conclusions

32



Defenses

• Defenses against transient execution attacks are being investigated at 
multiple levels:
• Hardware fixes 

• For instance, do not forward values from faulting loads to subsequent instructions

• Operating system level fixes
• For instance, do not place the kernel in the same virtual address space as user code

• Compiler level fixes
• For instance, insert instructions to stop out-of-order execution, or rewrite code to 

remove the vulnerability

• We focus on defenses against Spectre attacks



Security objective of defenses

• Microarchitectural side-channel attacks and transient execution attacks 
cause unexpected information leaks

• The security objective of a defense depends on how much program state 
we actually want to keep secret

• We define a policy as an equivalence relation over program states
• The intuition is that the policy relates states that should be indistinguishable to an 

attacker. Typically, one defines a policy by marking secrets, and two states are 
equivalent if they only differ in secrets.

• A program P is secure on hardware H if executing P on H starting from any 
two equivalent initial states will produce identical observations for the 
attacker
• Security can be achieved by software mitigations, or by hardware mitigations, or by a 

combination of both

34



Reconsider the Spectre v1 example:
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

35

pc=0

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @1234
pc=0

…

len:



A hardened version of the program is secure:
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

36

access @0
pc=0

a 1

len 0

i 2

r0 0

rob

*

access @1
pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

…

len:



Hardening with speculation barriers
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

37

a 1

len 0

i 2

r0 0

rob

*

pc=0

a 1

len 0

i 2

r0 0

rob

*

a 1

len 2

i 2

r0 0

rob

*

pc=6

…

access @0
pc=0

len:



A provable defense based on our models

• Let us now show the value of the models by designing a provably 
secure system
• Joint work (under submission) with L. Daniel, M. Bognar, J. Noorman, S. 

Bardin, T. Rezk 

• The basic idea is:
• Software will have to be secure under the constant-time model

• Hardware will track secrets and stall speculative execution only when secrets 
could leak

• Together, these two mitigations lead to an efficient and provably secure 
system

38



Illustrating the defense on Spectre v1
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

39

len:



Illustrating the defense on Spectre v1
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

40

len:

Code should be constant-time

Memory should be partitioned in public/secret



Illustrating the defense on Spectre v1
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

41

pc=0

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

a 1

len 0

i 2

r0 0

rob

*

len:

Microarchitecture should track secret 
taint, …

…, and block speculative execution of 
leaky instructions that depend on secrets



Illustrating the defense on Spectre v1
Memory:

1234: 0

… …

3: 1234

2: 5

1: 3

0: 2

a:

pc=0

a 1

len 0

i 2

r0 0

rob

*

42

pc=0

a 1

len 0

i 2

r0 0

rob

*

access @3
pc=0

a 1

len 0

i 2

r0 0

rob

*

len:

a 1

len 2

i 2

r0 0

rob

*

pc=6

…



The formal model

43



Example of an end-to-end theorem

• Suppose that the software:
• Labels memory addresses

• Is constant-time (does not leak secrets into control flow or addresses)

• Does not declassify secrets

• Then, execution of that software on the modeled processor does not leak secrets 
do the attacker.

44



Discussion

• Security:
• This theorem covers all the variants of Spectre we discussed and more
• The conditions on the software are realistic:

• Cryptographic software is already complying with the constant-time model today
• (Compiler will still need to make sure that memory addresses are labeled correctly)

• The conditions on the hardware are realistic:
• We have an implementation on an out-of-order RISC-V showing low hardware cost

• Performance:
• If everything is public, no performance penalty is incurred 
• If software is constant-time, only mis-speculations stall the pipeline
• Under other conditions, performance cost grows as there are (1) more secrets, (2) 

used in computations that benefit from speculation

45



Overview

• System model

• Microarchitectural side-channel attacks

• Transient execution attacks

• Defenses

• Conclusions

46



Conclusions

• Transient execution attacks are a fundamentally new class of attacks:
• That break many important security mechanisms
• That are not easy to defend against

• Short-term defenses have been useful but ad-hoc

• Long-term defenses are the subject of current research
• Pure software defenses against Spectre will remain important for the foreseeable 

future and are the subject of active research. 
• For a recent survey, see:

• Cauligi et al., SoK: Practical Foundations for Software Spectre Defenses, IEEE S&P 2022

• Hardware/software co-designs can offer better security/performance trade-offs
• Excellent starting point for reading more:

• Guarnieri et al., Hardware/software contracts for secure speculation, IEEE S&P 2021

47


