First Name : David	Na	Name : PAI		Laboratory : Laboratoire
	david nai@lan nalutachniqua fr			Physique des Plasmas (LP
Email : david.pai@lpp.polytec				
Webpage : https://www.lpp.p	olytechnique	e.fr/-David-P	ai-	
Research Area:				
Primary field : Lasers and Plas	•			
Secondary field : Materials Sci				
Methods: Atmospheric-pressu	•	•		
diagnostics (e.g. optical emiss	•			-
Thomson scattering), material	ls chemistry o	diagnostics (e	e.g. Raman a	nd photoluminescence
spectroscopy)				
PhD track subject:			-	
Plasma-surface interaction is a	•			
equilibrium plasmas, in which				
molecules, one common pher			-	
emerge with the use of compl			-	
propagation surfaces. In partic				
homogenize IW propagation a	-			
routinely used in microelectro		pothesis is th	at a gas-pha	se and electron-hole IW co-
propagate adjacently along th	e SOI interfa	ce.		
			12	
propagate adjacently along th	11 ns	12 ns	13ns	14 ns
			13ns	
			13ns	
10 ns 	11 ns	12 ns	0	14 ns
10 ns			13ns	
10 ns 	11 ns	12 ns	0	14 ns
10 ns 	11 ns	12 ns	0	14 ns
10 ns 	11 ns	12 ns	0	14 ns
10 ns 300 µm 15 ns	11 ns 00 16 ns	12 ns	0 ^{18 ns}	14 ns 19 ns ()))
10 ns 300 µm 15 ns	11 ns 00 16 ns	12 ns	0 ^{18 ns}	14 ns 19 ns ()))
10 ns 300 µm 15 ns	11 ns 00 16 ns	12 ns	0 ^{18 ns}	14 ns 19 ns ()))
10 ns 300 µm 15 ns	11 ns 00 16 ns	12 ns	0 ^{18 ns}	14 ns 19 ns ()))
10 ns 300 μm 15 ns 20 ns	11 ns 0 16 ns 0 21 ns 0	12 ns	23 ns	14 ns 19 ns 24ns 24ns
10 ns 300 μm 15 ns 20 ns	11 ns 0 16 ns 0 21 ns 0	12 ns	23 ns	14 ns 19 ns 24ns 24ns
10 ns 300 μm 15 ns 20 ns	11 ns 0 16 ns 0 21 ns 0	12 ns	23 ns	14 ns 19 ns 24ns 24ns
10 ns 300 μm 15 ns 20 ns 20 ns 29 ns	11 ns 16 ns 21 ns 000000000000000000000000000000000000	12 ns 17 ns 22 ns 22 ns 39ns 39ns	18 ns 23 ns (a) 47 ns	14 ns 19 ns 24ns 24ns

[1] Darny, T., Babonneau, D., Camelio, S., & Pai, D. Z. (2020). Uniform propagation of cathodedirected surface ionization waves at atmospheric pressure. Plasma Sources Sci-ence and Technology 29, 065012

[2] Pai, D. Z., Pailloux, F., & Babonneau, D. (2019). In situ Raman spectroscopy of nanostructuration by surface plasmas generated on alumina thin film-silicon bilayers. Plasma Sources Science and Technology, 28(8), 085007